Sharing between LRSs: a collaborative
experiment in practical interoperability

There are a number of benefits to sharing statements between LRSs and a number of ways to
do so. Three LRS vendors collaborated to create a proof of concept that shared statements
between their three LRSs. This whitepaper describes the challenges we met along the way
and the lessons that came out of it.

Project Background

Early in 2015, three LRS vendors came together to put the interoperability of their platforms to
the test. The goal was to set up a realistic system involving an LMS, several activity providers
and three different LRSs (one from each vendor), and then see what happened when we tried
to share statements from one LRS to another. The aims of the project were as follows:

Test and improve the interoperability of the three participating LRSs.

Test the specification itself; is it specific enough to ensure interoperability?

Find and prioritise gaps in the Conformance Test Suite; where are there
interoperability problems between three LRSs that have used the suite?

Promote the benefits of sharing statements to the wider community.

Grow the spirit of collaboration between competing LRS vendors working together to
drive the Learning Technologies industry forwards.

Collaborators

Several people from the three collaborating companies have been involved in the project in
one way or another. The points of contact from each collaborating organization, and
co-authors of this white-paper are:

e Andrew Downes from Rustici Software with Watershed LRS
e Ali Shahrazad from Saltbox with Wax LRS
e Ryan Smith from HT2 with Learning Locker

These three companies represent three of the most well known LRS vendors.

https://github.com/adlnet/xAPI-Spec/blob/master/xAPI.md
https://github.com/adlnet/xAPI_LRS_Test

Why share statements?

There are a number of different situations where moving statements from one LRS to another
might be useful.

v 4 A
LMS
Organisation Vendor - External
=>| “iRrs -— trs | LRS — [k
LRSs owned by different Getti‘ng data out
stakeholders of (or into) an LMS
LRS || LrRs || LRs
Oid Some b L] L
NewLRS | <€— LRS Other -~ LRS
System LRS || LRS || LRS

Pushing data to another non-LRS

An organisation has multiple LRS.
system

Migrating to a new system

Let’'s look at each of these in turn.

LRSs owned by different stakeholders

v 4
Organisation Vendor
| "Lrs < trs |

One use case for sharing statements that’s already happening in the wild is product vendors
maintaining their own LRS and also sending the data to the customer’s LRS. This might
include authoring tool vendors, content vendors, LMS vendors, indeed any vendor with a
product that generates statements.

The vendor’s LRS is normally the initial point of entry for statements, which are then sent on
to the customer’s LRS and possibly other destinations. The vendor uses their LRS to provide
direct reports to the customer and to provide generic reports across their clients that can be
used to improve the product or provide deeper insight into the learner taking place.

Although the reports provided by the vendor are often useful, customers also benefit from
pulling the data into their own internal LRS. This gives them ownership of the data and allows
them to combine the data with that from other sources for more interesting analytics and
reporting or supporting various other use cases.

Getting data out of or into an LMS

4
LMS
External
-
LRS] (RS

An LRS can either sit inside an LMS or be a separate product outside of it. Looking at
products on the market today, LRSs inside LMSs are generally relatively limited stores of data
that store data and present reports relating to stuff that happens in, or is launched from, the
LMS. Conversely, stand alone LRS products outside the LMS tend to pull in and report on
data from a range of sources, sometimes including one or more LMS.

If an LMS contains an LRS, and LMS activity needs to be reported on in an external LRS, it
makes sense to allow the LMS LRS to continue to collect all of the LMS data together and
then pass that in bulk to the external LRS.

In some cases, organizations already have a lot of reporting, sometimes bespoke, within their
LMS and are keen to keep the LMS as the store of all data. In these cases an external LRS
can be used to gather up data from a variety of external sources and bring them into the LMS
LRS as a single stream.

Migrating to a new system

Old

New LRS <+ LRS

When choosing a shiney new learning platform, it can be tempting to think it will last forever.
All things come to an end though, and having a plan to get your data out when the time
comes is vitally important. If you store all your learning records as statements in an LRS,
statements can be shared with the new LRS when the time comes, making that part of the
data migration incredibly straightforward. You then only have to worry about data not stored in
the LRS! This is an important use case of statement sharing.

Pushing statements to a non-LRS system

Some
Other A LRS
System

There are a number of systems other than LRSs that use statements in some way to do some
thing. Here’s some examples:

e A business information tool might use information contained in statements alongside
other data to deliver business intelligence and provide other functions.

e A Training Delivery System might deliver performance support materials to learners at
the point of need based their activity as tracked in statements.

e A credentialing, certification or badging tool might award credentials, certificates or
badges based on achievements reported in statements.

All of these tools could retrieve statements by regularly querying the LRS for new Statements.
Alternatively, there are benefits for the tool to implement enough of the specification in order
to receive statements without incorporating a full LRS. Statements can then be sent to that
tool as though it were an LRS and the tool can take action based on those statements.
Querying for statements wastes resources when no new statements exist and new
statements must wait until the next query before being sent on. Immediately sending
statements on from the LRS is the only option when instant action is required.

It's unlikely that you would want to send statements directly to such a tool from an activity
provider as these statements would not be stored. Instead, statements would be sent to an
LRS configured to send statements on to that specific tool.

We’re not aware of any products today that are enabled to receive statements in this way, but
it's certainly a possibility for products to consider in the future.

Multiple LRSs within an organization

LRS || LRS || LRS

LRS |J LRS || LRS

There are a number of reasons why an organization might have multiple LRSs. For example:

Following a merger of two companies, where both companies had their own LRS.

In a large organization with autonomous departments that have their own systems.

An organization spread across multiple sites and/or countries.

An organization including sites or operations with limited or intermittent connectivity
such as a disaster zone or a ship.

Whatever the reason for multiple LRS, sharing statements between these LRSs allows for
overarching reporting of data collated from all these LRSs and ensures that learners can
access their data and progress at whatever site they are at, whether that's a ship in the
middle of the pacific, an office in Frankfurt or the International Space Station (astronauts are
learners too).

Portable learner records

Another use case is the ability of learners to take their learner records with them when they
move between and within organizations. This is a relatively complex use case not covered by
the the experiment we completed, so the whitepaper collaborators have agreed to leave this
particular example out.

How can | share statements?

There are several different ways that statements can be moved between LRS:

LRS >

LRS

One LRS pushes

statements to another

—
LRS

—

LRS

Two way sharing

(both LRS push or pull)

LRS — LRS

One LRS queries (pulls)
Statements from another

LRS LRS

Two way sharing
(one LRS pushes and pulls)

P
e

LRS |e..

-

Statement
sharing
tool

L d
<+
—>

Man-in-the-middle

LRS

LRS | =—>

JSON
file

LRS

Download and upload
Statements as a file

Though we didn'’t try all of these approaches within the project, it’s still helpful to know about
them for background. Let’s look at each option in more detail.

One way sharing

LRS +—

LRS

LRS

LRS

One approach is to have one LRS share its statements with another. This means that all
statements in one LRS are transferred to another, but any statements already in the second
LRS are not transferred back to the first.

This can either be achieved by one LRS sending statements to another, or by one LRS
querying another for statements. Either of these processes follow the data transfer methods
outlined in the specification so there is no need for any custom integration between the LRSs.
If they are both conformat, it should work (which is the theory we set out to test in practice in

this project).

One way sharing is one of the approaches we tested (see ‘What we did’ below).

Two way sharing

......... > RS
- — —
LRS LRS LRS LRS LRS LRS
L e

An extension of one way sharing is to additionally share statements in the other direction such
that all statements in each LRS are shared with the other. This can be achieved by:

Both LRSs sending on their statements to the other.

Both LRSs regularly querying the other LRS to fetch statements.

One LRS sending it’s statements to the other LRS and also querying that LRS for
statements.

Two way sharing, with a single LRS both forwarding and fetching statements from the other,
is one of the approaches we tested (see ‘What we did’ below).

Man-in-the-middle application

sharing
tool

LRS LRS

vt

< Statement
q. .
—

I's also possible to share statements using a 3rd party, man-in-the-middle application that sits
outside the LRSs. This kind of application is configured to fetch statements from particular
LRSs and send them on to other LRSs. The application doesn’t necessarily store the
statements itself, it just fetches them and sends them on to their required destination.

We didn’t set out to test the man-in-the-middle

approach in our project. We did haveonelLRS | | | | .. >
fetch statements from another and pass those s |Z—%» LRS LRS
statements to a third though, which is very —

similar to the man-in-the-middle approach. In
this case an LRS is used as the man-in-the-middle application!

Download and upload

JSON

—p | LRS
file

LRS | =——>

Finally, statements can be between LRSs by downloading the statements as a JSON
document from one LRS and uploading it to another. This method is particularly valuable for
transferring statements where the LRSs are not able to directly connect to one another due to
connectivity issues or security restrictions.

It could also be useful in migrating data between LRSs where there is a time gap between
when data can be downloaded from the old LRS and when it is able to be uploaded to the
new one, or in situations where a backup of the transfer is required.

This method is clearly manually intensive and therefore much more costly per transfer than
automatic methods. It's not suitable for a permanent link between LRSs where regular
updates are required. Additionally, the time gap means there’s no way for the receiving LRS
to return errors to the sending LRS, so any problems with statements would need to be
worked out manually.

How does the spec ensure interoperability?

The specification was written with statement sharing in mind. The common structure of
statements is useful not just for sending statements to an LRS, but ensures interoperability
sharing between LRSs too. Common data transfer mechanisms designed for the flow of data
both into and out of the LRS also help to ensure statements can be shared smoothly.

The spec also has rules in place to handle conflicting and duplicate statements. These are
important when statements are shared two way between LRSs as statements sent from the
first LRS may well come back round from the second. Duplicates need to be avoided without
generating unwanted error messages to the end user.

Where validating the original author of a statement that has traversed multiple LRS, the spec
outlines a process for digitally signing statements. The final recipient of the statement can
validate the signature of a signed statements and confirm the author of the statement is who
they say they are.

What we did

For this project we had three LRS in a chain, with the middle LRS providing a connection
between the other two. One connection was set up as a one way link pulling in statements,
whilst the other was a two way link both pushing and pulling statements. See the diagram
below:

......... *
o —
LRS —_— LRS LRS
—

Initial investigation

The first step in our investigation was to have a go at hooking the three LRSs together to see
what worked and what didn't.

We set up a Moodle LMS with Tin Can plugins installed and launched the Golf Prototype (as
an example of formal e-learning) from Moodle, tracking statements into Learning Locker. We
then pulled these statements into Watershed as an example of sending statements in one
direction from one LRS to another. Moodle was configured to fetch the statements from
Watershed to display to the learner, completing the loop.

) J* LEARNING P R r
az LEARNING 2y é
Statements queried l A
Tracked Statements displayed
E-learning LMS

(Golf example) Launched -

https://moodle.org/plugins/browse.php?list=set&id=48
http://tincanapi.com/prototypes/?utm_source=tincanapi_com&utm_medium=statement-forwarding-whitepaper&utm_term=andrew&utm_content=page&utm_campaign=prototypes?pmc=em-1

Next, we brought Wax LRS into the mix, setting up a two way link between Wax and
Watershed. Statements from Wax were pulled into Watershed and statements from
Watershed were pushed to Wax. This meant statements from the Golf Example were going
through Learning Locker, into Watershed and on to Wakx.

At this stage, Wax did not have any new statements to send to Watershed that it didn’t
already have. The pull from Wax to Watershed only served to test how the LRSs handled
duplicate statements which had originally come from Watershed into Wax and were now
being pulled back to Watershed from Wax.

Yo a0 2 P WaxLRS

LOCKER

. — by SaLT!
I Statements queried 1 A Statements pushed '
Tracked Statements displayed
E-learning LMS
course 4<@— — = = -
(Golf example) Launched -

We then pointed the Golf example at Wax in order to test the flow of new statements from
Wax into Watershed and through to the display on Moodle. This is essentially the same flow
as we originally tested with Learning Locker, but using Wax instead.

Statements queried

ys LEARNING ‘,‘ — Wax LRS

by SaLT!
1 % T
Statements displayed Tracked
LMS E-learning
————— > course
- Launched (Golf example)

This initial investigation was broadly a success: we managed to get statements going to all
the places we wanted them. This is a significant achievement, given that the three different
products from different vendors had never before been tested together. Following the
specification and using the conformance suite had set us on a solid foundation.

The test did reveal a number of bugs and issues though. Certain statements wouldn’t work at
all, and whatever statements we sent, the whole process was fragile; it would stop working

almost immediately when a link was created and a few statements had been sent. The
two-way link did work in both directions, but not at the same time. It was clear there was work
to be done.

Fixing bugs

The next step was to document the bugs and pass them to the developers working on the
relevant LRS. All of the issues discovered through this process have now been resolved.
What'’s interesting though is that many of the issues uncovered related to launching the Golf
Prototype from Moodle and getting data out of that, rather than sending statements between
LRSs. We had to make some fixes to the Golf Prototype and to the Moodle plugins too. The
changes to the Golf Prototype are currently being peer reviewed before they are published;
you can follow the pull request (and even download the unpublished versions) here.

Summary of issues
For the technically inclined, here’s a summary of the issues we hit.

Areas unrelated to statement Forwarding where we had difficulties were:
e The LRS was rejecting Documents sent to the Document APIs due to problems with eTags.
e The LRS was rejecting the format of the Correct Responses Pattern for numeric questions. The
specification was ambiguous on whether the LRS or Golf Prototype were right.
The format of some of the Choice Ids in the Golf Prototype was wrong.
e The Golf Prototype was passing an additional query string parameter to the LRS that it shouldn’t
have done.

Issues relating to sharing statements between LRSs included:

e Anincorrectly included ‘more’ link with statement results when there were, in fact, no more
statements.

e With two-way statement forwarding where a statement was going out and then coming back in,
comparision of the statements was failing such that the receiving LRS believed it was receiving a
different statement with the same id, rather than a duplicate of an existing statement. This was
causing the link to stop working entirely.

e There were issues with timestamp comparison when fetching statements such that the same
statements were being retrieved again and again in a loop.

The development teams of each LRS worked hard to address these issues alongside other
work priorities until we were ready to try again!

Reviewing the spec and conformance test

As the development teams worked on the issues, we raised an issue against the specification
itself to clarify the correct format of the Correct Responses Pattern for numeric questions. This
was quickly resolved in the specification. We also raised issues for all the problems we hit
against the Conformance Test Suite. Once these tests are built into conformance testing, it
will help to ensure that other LRSs do not run into the same problems that we hit. That said,
we recommend that all LRSs carry out testing against other LRSs as we have done here.

https://github.com/RusticiSoftware/TinCan_Prototypes/pull/30
https://github.com/adlnet/xAPI_LRS_Test

Our Proof of Concept
The final proof of concept was relatively similar to the set up

we tried in the initial investigation

except that we used a different data source to feed into Wax - a bookmarklet - instead of

re-using the Golf Prototype. We wanted to show a variety of

data sources taking different

routes through different LRSs being pulled together and displayed on the dashboard in

Moodle.

Our final system looked liked this:

LEARNING <o ,,
@"‘: LOCKER — C
I Statements queried 1 A
Tracked Statements displayed
E-learning LMS
course 44— — — —
(Golf example) Launched -

In this example, Learning Locker has been integrated into M

Statements queried

Tracked

Bookmarklet

oodle such that Moodle launches

the Golf Example prototype and statements from Moodle and the Golf Example are sent to

Learning Locker. These are forwarded on to Watershed.

At the same time, statements from the bookmarklet are sent
to Wax LRS. As Wax and Watershed are linked, statements
from the Golf Example are passed on to Wax and
statements from Bookmarklet are passed to Watershed.

Moodle then pulls all statements from Watershed (including
those originally from Learning Locker and Wax) and
displays them to the learner as an activity stream (pictured
right).

Unlike the initial test, in the final proof of concept, all of
these links are live at the same time. In theory, the learner
could use the bookmarklet and example e-learning course
at the same time and the statements from both would be
fed through and displayed back to them on Moodle.

Andrew Downes experienced Golf -
Wikipedia, the free encyclopedia

Andrew Downes terminated Golf
Example - Tin Can Course

Andrew Downes suspended Golf
Example - Tin Can Course

Andrew Downes experienced
Scoring

Andrew Downes experienced Par

Andrew Downes resumed Golf
Example - Tin Can Course

Andrew Downes initialized Golf
Example - Tin Can Course

http://tincanapi.com/bookmarklet/?utm_source=tincanapi_com&utm_medium=statement-forwarding-whitepaper&utm_term=andrew&utm_content=page&utm_campaign=bookmarklet?pmc=em-1

Screen capture and sharing

The final step in our project was to share the results of our experiment. We recorded a
screencast demoing the final proof of concept system which will be published alongside this
white paper. You can watch the screencast here.

As we recorded the screen capture, we realized that there was a short delay between a
statement arriving in Wax and Learning Locker and it being pulled into Watershed. This is
because when pulling statements, we have to wait for Watershed to make another check for
new statements. This issue does not affect pushing statements from Watershed as incoming
statements can be forwarded on instantly.

As a result of this, we had to pause screen recording in a couple of places for continuity. Do
bear in mind as you watch the screencast that in reality the statements may have taken a
minute or so to arrive at their final destinations.

We’'ll be presenting this project and whitepaper at xAPI Camp on 24th March 2015 and in a
webinar at the end of April/early May.

What else could we have done

This example was deliberately simple for the purposes of demonstration and in practice the
scenarios where statements will be shared between LRS may be more complex. The
following could have easily been included in the demo instead of or as well as the elements
we showed:

e Two way sync of statements between Learning Locker and Watershed. We included
this as a one way sync as a way of contrast between the two way sync used between
Wax and Watershed; we could easily have done this the other way round.

Displaying statements in an external report outside of Moodle.
Transferring existing statements. Our example showed statements being transferred
as they were generated, but this approach also works for existing statements.

e One or more of the other statement sharing methods described in ‘How can | share
statements?’ above.

http://youtu.be/Ys3wkUChg7k

Lessons learnt

The most important part of this project is the lessons learnt for LRS vendors and our
customers. These are outlined below:

The spec is robust
The vast majority of issues we hit were bugs with one LRS or another. We found no
ambiguities or gaps in the specification relating to sharing statements between LRS.

We did find one very minor spec ambiguity around the format of the Correct Response
Pattern in some types of questions that had been carried over from SCORM. The xAPI
Working Group are working to reduce dependency on SCORM within the spec and this issue,
along with several others, will be clarified in the next version of the specification, 1.0.3.

Conformance testing is important

A significant number of tests were added to ADL’s Conformance Test Suite sometime prior to
this project. This paved the way for the project and ensured that areas that might have been
issues for this project were handled ahead of time. We already know that the test suite is not
complete and more work is needed by the community. That some issues still had to be fixed
even after using the test suite proves this point. Passing the test suite doesn’t guarantee
conformance on its own.

All the issues we uncovered during this project have been raised on the Conformance Test
Suite Github to be fixed.

Interoperability is hard

One key take away from this exercise is that even with an agreed specification to follow,
interoperability is hard. We chose three of the most well known, high profile LRSs and they
failed to interoperate fully on the first attempt. Once we had fixed the issues, the second
attempt went extremely smoothly. This illustrates the importance to LRS vendors of going
beyond conformance testing and trying their products with one another, as we have done
(and possibly copying our method), then fixing issues that arise.

Sharing statements is not the hard bit!

Many of the issues we hit during this project were not directly related to sharing statements
between LRS, but rather related to getting the statements into the LRS in the first place. (See
the section titled ‘Fixing Bugs’ above).

This illustrates the importance on validation of statements by LRS; by ensuring invalid
statements are not accepted into the LRS in the first place, there are less likely to be issues
when moving these statements on into another LRS.

https://github.com/adlnet/xAPI_LRS_Test
https://github.com/adlnet/xAPI_LRS_Test

This also illustrates the importance of LRS vendors testing with multiple Activity Providers and
Activity Providers testing with multiple LRS. Any adopter will make some errors implementing
the specification and there are still some minor ambiguities in the specification that the xAPI
Working Group are working on. Each successive patch release of the specification improves
this, but there will always be a need for practical testing with real world implementations.

LRSs could do more

Comparing the ‘Benefits of Sharing statements’ section above to the features of our various
LRSs was a reminder that we’ve all got work to do in order to fully take advantage of this
feature of the specification. We all have statement sharing features somewhere on our
roadmap so expect to see further development in this area in future and ask your vendor if
you have any specific requirements.

Pushing is better than Pulling

As we described above, when pulling statements, the LRS periodically queries for new
statements. This can lead to a delay in statements reaching their final destination as each
batch of statements has to wait for the next query cycle.

In scenarios where it's important statements are available in the final LRS almost immediately
after being received by the first, we recommend that statements are pushed instead. Pushing
statements also has the advantages of reducing the load on the LRS being queried regularly
when no new statements exist and allowing statements to be sent to other statement
receiving systems which are not full LRS.

Find out more

The screencast of our proof of concept can be found here. Also watch out for details of a
webinar on this topic at the end of April!

The contact details of each of the whitepaper collaborators and links to their LRS websites are
below.

Andrew Downes: andrew.downes@tincanapi.com
Watershed LRS: watershedIrs.com

Ali Shahrazad: ali.shahrazad@saltbox.com
Wax LRS: saltbox.com

Ryan Smith: ryan.smith@ht2.co.uk
Learning Locker: learninglocker.net

QR codes

If you're reading a printed copy of this whitepaper, scan the QR codes below to access digital
versions.

This whitepaper: http://goo.gl/gWnrXL

http://youtu.be/Ys3wkUChg7k
mailto:andrew.downes@tincanapi.com
http://watershedlrs.com/
mailto:ali.shahrazad@saltbox.com
http://www.saltbox.com/
mailto:ryan.smith@ht2.co.uk
http://learninglocker.net/
http://goo.gl/gWnrXL
http://goo.gl/yGcT3h

