
Anatomy of a Tin Can
API Statement

The Tin Can API can be a little
more complicated than it appears
on the surface. We challenged
Brian Miller to write a series of blog
posts on TinCanAPI.com detailing
the entire anatomy of a Tin Can
statement and all of the possibilities
and considerations that go along
with the Tin Can specification.

The result was the the 9 part blog
series — Deep Dive: Anatomy of a
Tin Can Statement.

This is the entire series, bound into
one e-book.

Enjoy!

About This Book

// Page 2

Brian Miller is one of the
world’s top Tin Can API
developers, as well as a
contributor to the
specification. He’s
involved in several Tin
Can working groups, and
he’s the curator of the
Rustici Software Tin Can
Registry. Follow him on
Twitter @k95bm01.

// Page 3

About The Author

http://twitter.com/k95bm01
http://twitter.com/k95bm01

Intended Audience…………………………………………5

Intro …………………………………..……………………….6

1. Actor/Agent …………….……………..….…………..12

2. Verbs ………………….………………..………….…...22

3. Activity ……….……………………..…………………..29

4. Object .……………………………..……………………42

5. Extras/Others ….………………………………………51

6. Context …..……………………………………………..59

7. Result ….…………………………………………………67

8. Extensions ……………..………..…………………….74

9. Attachments …………………….……………………..81

TABLE OF CONTENTS:

If you are not familiar with the basic concepts of what the Tin Can
API provides, then you might want to start at http://tincanapi.com
and return to this book when you are ready to start capturing
learning experiences.

Since this is a fairly in-depth look at the structure of a Statement,
it’s assumed that the reader is already familiar with the basic
concept of a Tin Can Statement, has at least seen a Statement, and
possibly created one.

This book is for learning designers and developers who will be
outfitting systems that will send Statements. We’ll take a deep look
at the various parts of a Statement’s structure and we’ll enable the
reader to devise a broader set of Statements to capture a more full
range of experiences.

If you are familiar with the concepts inherent in the Tin Can API but
are new to crafting Statements themselves, you may want to have
a look at the “Statements 101” primer available at
http://tincanapi.com/statements-101/.

Intended Audience

// Page 5

http://tincanapi.com
http://tincanapi.com/statements-101/
http://tincanapi.com/statements-101/
http://tincanapi.com/statements-101/
http://tincanapi.com/statements-101/

Statements are the vehicle by which
experiences are captured when using
the Tin Can API specification.

Introduction
Anatomy of a Tin Can
Statement

// Page 6

Noun verb object.
I did this.

Statements are the vehicle by which experiences are captured
when using the Tin Can API specification. Each part of a
statement serves a particular purpose, but when used together
they form a cohesive unit enabling a flexible, yet powerful
system useful for capturing formal learning, informal learning,
and virtually any other experience data. In this book I’ll dissect
the parts of a Statement and examine each individual part in
detail, seeing both how it is used as part of a Statement, as well
as mentioning when it is useful to the specification in other
ways.

Statements are designed both to enable conferring the meaning
of an experience, in other words why we’d bother with the data,
as well as to facilitate the transport in and out of systems which
care more about the shape of data than the content. At the
Statement’s core is the triple pattern, specifically Actor-Verb-
Object, that is common in natural languages. Additional
metadata further describes the experience and rounds out the
statement’s body. Triples have become a common way of
capturing streams of data, particularly in the social media realm,
and modeling learning experiences in this way has already
proven to be quite effective.

But using a triple only gets us halfway to our goal — we still
need a way to have systems handle the data effectively. Since
the statement stream will be conveyed through the use of web
services, JSON is the conventional choice for structuring the
data. By combining an easily recognized pattern from natural

Anatomy of a Tin Can API Statement

// Page 7

http://www.google.com/url?q=http://blog.swirrl.com/articles/introduction-to-rdf/&sa=D&sntz=1&usg=AFQjCNHqrVKGGT4CpecvsSSYu1ErIK71HA
http://blog.swirrl.com/articles/introduction-to-rdf/

language, such as a triple, with a relatively readable yet highly
structured data transfer language, in this case JSON, we can
achieve both goals.

“JSON” stands for JavaScript Object Notation, and as the name
suggests, it’s a way of describing the structure of an object in the
JavaScript language. Because of its early proliferation amongst
web browsers JavaScript has become the language of the web,
therefore a subset of the language such as JSON was a natural
choice when needing to serialize/deserialize data being sent
using web services. This has resulted in JSON either being paired
with other structured languages such as XML, or being used
exclusively by developers of API services. Wide adoption led to
extensive library support in virtually every server side language.
Combine library support, minimal size transfers, and relatively
easy human readability and JSON becomes a natural choice for
building Tin Can Statements.

Objects are the top level construct in JSON and are created using
a pair of braces, such as {...}. Within the braces a set of
key/value pairs enumerate the object’s properties. The keys, or
property names, are quoted strings using either double quotes
(“) or single quotes (‘). The property values can be quoted
strings, JavaScript primitives (such as 1, true or null), arrays or
nested objects. Whitespace outside of quoted values is ignored.
Because values of properties can be objects, an arbitrarily deep
nesting of objects is possible. Arrays are lists of elements and are
wrapped using brackets, such as [...], and elements are

Anatomy of a Tin Can API Statement

// Page 8

delimited with a comma (,). The elements of an array are the
same types as the values of properties and therefore add to the
arbitrary nesting ability.

As it is fairly human readable, JSON is often best explained
through an example. This example attempts to capture the
majority of the possibilities of structuring data with JSON:

A Statement is a specific type of object that has well defined
properties. Drawing from the triple pattern mentioned above,
there are three obvious properties, “actor”, “verb”, “object”, all
of which are required in every Statement. Along with these data
stream staples the Tin Can API adds “result”, “context”, “id”,
“timestamp”, etc. Each of the properties serving a specific
purpose and taking a highly specified set of possible values.
Here is an example of a complete, but minimal Statement:

Anatomy of a Tin Can API Statement

// Page 9

{

 “simpleProperty”: “Some string value”,

 “listProperty”: [

 “first in list”,

 “second in list”

],

 “booleanProperty”: true,

 “nullProperty”: null,

 “nestedObject”: {

 “somePropertyOfObject”: “I’m inside an object”

 }

}

Some values are simple strings or primitives, some values are
very specific types of strings, such as URIs, and some values are
other highly specified objects, such as Agent or Verb. The rest of
this book lays out each property that can be contained in either
a Statement or a subobject along with its properties and
provides examples of the corresponding JSON structures.

Anatomy of a Tin Can API Statement

// Page 10

{

 “actor”: {

 “mbox”: “mailto:brian.miller@tincanapi.com”

 },

 “verb”: {

 “id”: “http://adlnet.gov/expapi/verbs/experienced”,

 “display”: {

 “en-US”: “experienced”

 }

 },

 “object”: {

 “id”: “http://tincanapi.com/webinar/anatomy-of-a-statement”,

 “definition”: {

 “type”: “http://adlnet.gov/expapi/activities/media”,

 “name”: {

 “en-US”: “Anatomy of a Tin Can Statement”

 }

 }

 }

}

Anatomy of a Tin Can API Statement

// Page 11

Statement Properties Specified Subobjects

id Agent

actor Group

verb Verb

object Activity

context Activity Definition

result Context

timestamp Result

stored Score

authority Statement Reference

version Sub-Statement

attachments Language Map

By convention, object properties in the content will be
quoted, usually with single quotes to disambiguate from
other types of quoted material. A capital first letter is an
indicator of a type of object as provided for in the
specification (for example Agent). As the rest of the chapters
of this book were originally blog posts, and they should still be
available online, please feel free to leave comments or submit
errata on the chapter’s corresponding post.

Does a statement get recorded in an
LRS if there is no one there to
experience it?

CHAPTER 1:
Actor/Agent

// Page 12

Does a statement get recorded in an LRS if there is no one there
to experience it?

The Problem with Abstractions

The Tin Can API is designed for recording information about
experiences, but one of the assumptions is that someone, or a
group of someone's, has to be the experiencer. Enter the term
“actor”, often referred to as the “I” in a Tin Can statement, or
grammatically, the subject.

There is a lot of abstraction in building Tin Can statements, and
at first glance, defining the “I” of a statement seems simple and
concrete enough that we should start there. Unfortunately, it
just isn’t that simple, “Who am I?” is a pretty big question of the
ages and that question didn’t get any smaller in Tin Can. To
compound the issue, not only do you have to define the “I”, or
perhaps the “royal we”, you have to tell someone else that it
was you. And to further complicate matters, maybe you aren’t
interested in just being “I,” but you want to bring along your
friend “me” (or friends, “us”). And don’t get me started on
“myself”. Okay, enough pronoun soup for a while, back to
actor…

To understand the ‘actor’ portion of a statement, it is helpful to
take a step back and understand the distinction between a key

Anatomy of a Tin Can API Statement

// Page 13

or property (left hand side of an assignment) versus the value
(right hand side of an assignment) in a JSON object. Ultimately a
statement is made up of properties that have values assigned to
them, ‘actor’ is one such property, and in the case of ‘actor’ its
value must be an Agent (or Group). This means that ‘actor’ is
simply a placeholder (or pointer) and doesn’t have a concrete,
standalone representation.

In other words we don’t think of an “Actor” as a noun itself, or
type of object, we think of “actor” as pointing to a specific value.
Also note that I’m using “actor” (lowercase) versus “Agent”
uppercase to distinguish between properties of a statement and
the types of values they hold. This is the point where my wife
tells me that I am just playing semantics, and if she were a
developer I would retort that is *precisely* what I’m doing
because semantics are very important to me (us). (By the way,
she isn’t a developer, so I don’t retort at all or I’d be
experiencing the doghouse.)

Defining Agents and Groups

Agents then, are a type of object, and all we can really know for
sure about that agent is that its representation is consistent
because all we have to represent an agent is an inverse
functional identifier, which is a fancy way of saying a unique ID
that we can trace back to the same entity. That inverse
functional identifier can take several forms for Agents, e-mail

// Page 14

Anatomy of a Tin Can API Statement

address (or mbox) being the most easily understood. Along with
the raw human readable e-mail address an Agent can be
identified by the SHA1 hash of their email address (well, it has to
be an IRI so it includes the “mailto:” part).

// Page 15

{

 mbox: "mailto:info@tincanapi.com",

 objectType: "Agent"

}

{

 mbox_sha1sum: "f427d80dc332a166bf5f160ec15f009ce7e68c4c",

 objectType: "Agent"

}

Moving beyond e-mail, an agent may be uniquely identified by
their OpenID URI. While e-mail is still a pretty universally
accepted concept and OpenID has taken off in some circles, the
specification also provides for a more system specific variation
such that an agent can be identified by combining a unique
identifier for a given system, say Twitter.com, and their unique
representation on that system, for instance their “Twitter
handle”; the combination is known simply as an “account.”
While some systems will come and go, and we may eventually

Anatomy of a Tin Can API Statement

see the end of e-mail addresses, the concept of a unique ID for a
system plus that system’s unique ID for an entity (account as a
concept) should be flexible enough to last as long as the spec
will.

// Page 16

{

 account: {

 homePage: "http://twitter.com",

 name: "projecttincan"

 },

 objectType: "Agent"

}

One important note, while an Agent may have multiple inverse
functional identifiers available for use an Agent object should
only include one of them in a given representation to avoid
learning record stores from rejecting such requests for privacy
reasons related to linking of inverse functional identifiers. And,
oh yeah, an Agent can have a ‘name’ so that us humans can
more easily associate with it, too.

{

 mbox: "mailto:info@tincanapi.com",

 objectType: "Agent",

 name: "Info at TinCanAPI.com"

}

Anatomy of a Tin Can API Statement

In the above examples we also explicitly included the
‘objectType’ property set to “Agent,” that property can be left
out whenever an object must be either an Agent or a Group and
defaults to an Agent (such as in the ‘actor’ property).

Groups are similar to Agents in that they are a type of object
used to represent an entity, but with the potential of an
additional property that allows a group to enumerate all or
some of its constituents, specifically the ‘member’ property.
Groups must provide the ‘objectType’ property with a value of
“Group.” Groups come in two flavors: identified and unidentified
(or anonymous). In the former case an identified group has an
inverse functional identifier (or unique ID) just as an Agent does,
and may or may not include its ‘member’ property. If an
identified group includes a ‘member’ property with a list, it
should not be assumed to be an exhaustive list, meaning that a
statement may call out a specific subset of member Agents for
an experience (perhaps the famous ones, or the biggest donors,
or the best dressed, or the first to arrive). In the latter case an
anonymous group is not associated with any uniquely
identifying information, therefore does not have an inverse
functional identifier, but must include the “member” property.
Although the specification, as of 1.0.0, leaves it open that the
member list in this case need not be exhaustive, it is a best
practice to make it so, as there is no way to associate other
Agents with that part of the statement. And although it is a
natural inclination to associate unidentified groups with the
exact same set of member Agents as the same group, the
specification draws

// Page 17

Anatomy of a Tin Can API Statement

attention to the fact that implementing systems should not
make this assumption. Additionally, both kinds of groups’
member lists must only include Agents, therefore it is not
possible to nest Groups.

// Page 18

{

 mbox: "mailto:info@tincanapi.com",

 name: "Info at TinCanAPI.com",

 objectType: "Group",

 member: [

 {

 mbox_sha1sum: "48010dcee68e9f9f4af7ff57569550e8b506a88d"

 },

 {

 mbox_sha1sum: "ca3ffdb44c4727137e29ebf42ee80c2afdd8d328"

 },

 .

 .

 .

]

}

{

 objectType: "Group",

 member: [

 {

 mbox_sha1sum: "90f96ca8c3ae315f0e40df4e16772eb6d05e3937"

 },

 {

 mbox_sha1sum: "ca3ffdb44c4727137e29ebf42ee80c2afdd8d328"

 }

]

}

Anatomy of a Tin Can API Statement

Back to Statements

Now with our Agent/Group objects in hand we just drop them
into the “actor” property and away we go; however there are
other places in a statement where an Agent can be used as well.
The “me” instance mentioned earlier can be accomplished by
placing my Agent or Group (“us”) in the ‘object’ property to
form a statement similar to “Sam (Agent 1) helped me (Agent
2)”. In that case, the statement uses two Agents, the “actor”
property still contains one, Sam in this case, along with the one
used in “object,” Brian (or me) in this case. Agents or Groups can
also be included in the ‘context’ of a statement as an ‘instructor,’
leading to statements of the form “Brian (actor) learned Tin Can
from Ben (instructor).” Context can also include a ‘team’
property but it must be a Group.

Last but not least, an Agent is used to populate the ‘authority’
property of a statement, but generally statement creation is
done with out this, leaving it to be populated by the LRS (more
on “authority” in a future post).

Outside of Statements

Since Agents are set into some of the most valuable parts of a
statement’s makeup, they need to be query-able. Agent objects
are passed via the “agent” query parameter to the statements
API for retrieving statements that have a matching ‘actor’ or

// Page 19

Anatomy of a Tin Can API Statement

‘object’ property. Send a request with the “related_agents”
query flag turned on to find statements where an Agent exists in
one of the other possible locations as well.

Agents are cool enough that they get their own API methods,
known as the Agent Profile. Agent Profiles really warrant their
own post for the future, but for now it is enough to say that we
can associate arbitrary data with a particular Agent in an LRS
using them. One example use case is storing user
preferences. Along with the Agent Profile, Agents are also
composed into the State API calls.

Gotchas

Besides being part of enumerable groups in most cases, these
days a given person probably has many inverse functional
identifiers as well. I personally have three e-mail accounts that I
consider separate, one personal, one business, and one for
various other things. And each one of those technically has
aliases in about ten other domain names. Each of those could be
considered distinct inverse functional identifiers, so that means I
have about thirty ways to be identified, just by e-mail, not to
mention I have at least ten public facing profiles (such as Twitter,
Github, Facebook, LinkedIn, Google+, etc.) which all have an
“account” concept that could be used in Tin Can API
communications, and those are just the public ones. The key
takeaway here is that systems working with Tin Can API need to

// Page 20

Anatomy of a Tin Can API Statement

account for the fact that a “Person” may have any number of
unique identifiers.

Additionally, in all of the inverse functional identifier cases, we
can’t know whether that e-mail address or account is a shared
one or not, so while an Agent can be loosely associated with a
person it should not be assumed to represent a single person.
For that matter, we probably shouldn’t assume that it is even a
human on the other end. There is also the issue of time and the
fact that e-mail addresses or accounts can change hands, for
example “info@tincanapi.com” could be sent to any number of
people or “brian@example.com” might change hands from
Brian Miller to Brian Smith. Ultimately that is just one of the
reasons a ‘timestamp’ property exists, but we’ll get to that in a
later post.

Go now, make statements!

// Page 21

Anatomy of a Tin Can API Statement

In continuing with our “Anatomy of a
Tin Can Statement” series, here’s the
next installment — verbs. In this post,
I’ll tell you a lot about how verbs work
with the Tin Can API. If you have any
questions at all, please leave them in
the comments below, or email
info@tincanapi.com.

CHAPTER 2:
Verbs

// Page 22

mailto:info@tincanapi.com

Inclusion in Statements

Verbs are a required part of statements and including them is
simple enough. Set a Verb object into the “verb” property of a
statement to indicate the action being taken for a given
experience. A Verb object can consist only of an “id” property
pointing to a URI (well, IRI). Here is an example:

// Page 23

{

 id: http://adlnet.gov/expapi/verbs/experienced

}

While that’s sufficient it seems people prefer something a little
more akin to their own language, therefore Verbs should include
a “display” property as well. The ‘display’ property’s value is a
language map (a list of language codes with corresponding
string values). Language maps are central to giving the Tin Can
API internationalized data interoperability. Here is the same
verb, but with a human readable display value:

{

 id: "http://adlnet.gov/expapi/verbs/experienced",

 display: {

 "en-US": "experienced"

 }

}

Anatomy of a Tin Can API Statement

Additional language values can be easily added to the language
map using the RFC 5646 language tags, “en-US” above is an
example of American English.

History

Early in the specification process there was a pre-defined set of
verbs. In the development of the 0.95 version of the
specification that list moved to the object form with full URI for
“id” and was moved out of the specification proper in favor of
letting new verbs be created at will. ADL still maintains a list of
verbs that are specifically designed for the learning community,
though there is no reason those verbs can’t be used for other
purposes as well. Verbs such as “attempted”, “experienced”,
“passed”, “failed”, “answered”, and “completed” (in their URI
form of course) match up well with previous standards and have
become some of the most common used in Tin Can so far. It is
expected that communities of practice will evolve to create their
own set of specific verbs known and used within a particular
community. And the exception to the rule, since they all have
one, there is one predefined verb included in the specification
which serves the special purpose of voiding a statement. To void
a statement send a new statement with this special verb having
id “http://adlnet.gov/expapi/verbs/voided” along with a
statement ref (more about these in a future post) to any LRS
that may have received the statement.

// Page 24

Anatomy of a Tin Can API Statement

http://tools.ietf.org/html/rfc5646
http://adlnet.gov/expapi/verbs/voided

Past Tense

Verbs should be past tense. Tin Can is designed to track
experiences which by their nature are time based, consequently
verbs are past tense because a statement has to be recorded
(note past tense) for the experience. No matter how soon after a
recorded experience is reported on, that portion of the
experience must already be in the past. (This is also one of the
reasons why a statement no longer indicates something as “in
progress”.) The concept of time passing as relates to streams of
activities, potentially within the same experience, provides a
significant amount of the complexity required to derive meaning
from just a pile of statements, but at the same time provides the
flexibility that allows content creators’ imaginations to flourish.

Resolvability

Verb IDs as URIs mean that many verbs can be resolved to a
location (URL), and when they do they can provide additional
meta information. The meta information should contain an
object with a “name” and “description” properties, at least
when requested as JSON, per the specification. These properties
are used to provide information specifically about the verb
rather than the representation of the verb itself (what the
“display” property is for). This is a good start and as verbs and
Tin Can evolve we’ll have a way to extend the information
surrounding verbs (and other items using URIs). The Internet

// Page 25

Anatomy of a Tin Can API Statement

purist in me says that because a Verb uses a URI and because I
can pick a URI that can be a URL that I should, and that all verbs
should resolve, but the specification (rightly so, cause I’m not
always a purist) leaves it open that Verbs don’t have to resolve.

To Coin, or Not to Coin

It really isn’t a question! You should avoid coining new verbs
except as a last resort. Okay, last resort may be a bit strong as
early as Tin Can adoption is, but eventually the set of verbs
should move towards a fixed state. Consider the three required
parts of a statement–actor, verb, object–only one of these, the
verb, can be consistently matched across experiences for
different people, or indicate different actions within an
experience for the same actor. Those two dimensions are
fundamental to reporting and don’t work if every new
experience comes with a whole new set of verbs. This is where
the community of practice comes in, verbs will gain traction
through adoption. As verbs gain traction their common use
allows system implementers to rely on their semantic meaning
which is the foundation of the interoperability that a
specification like Tin Can seeks to provide. Statement creators
should look for and leverage existing verbs whenever possible.

// Page 26

Anatomy of a Tin Can API Statement

Registry

We’ve taken to calling a list of verbs (and other URI based
components) a “registry,” and have implemented one,
specifically The Registry where you can go to find Verbs that are
being used in the wild. Right now it consists of the list of ADL
verbs, but we are working on functionality (when not writing
blog posts) to allow users to create new verbs through a curated
process precisely to prevent the explosion of verb creation that
could lead to less interoperability. Certainly we can’t prevent
people from coining and using new verbs, and new verbs will be
necessary over time, but we also want to help those verbs to be
ever lasting (as they need to be since statements are) and that
those ever lasting verbs will continue to resolve, so we’ve
opened up the “id.tincanapi.com” domain namespace to be
used for URI based ids. Verbs (and other items) created in The
Registry will have resolvable URLs that will serve the meta data
associated with them as defined by the specification.

Meanings, Not Words

Verbs are tough, and English (other languages do too I’m sure)
does its best to make them tougher. So far we’ve said to reuse
verbs when possible to allow interoperability, but we’ve also
said there will be communities of practice that will adopt their
own set of verbs. There is a conflict in these two best practices
that arises because a single verb may have different meanings

// Page 27

Anatomy of a Tin Can API Statement

http://registry.tincanapi.com

depending on context, a synonym if you will. To say it another
way to stress the impact of this, Verb objects have an identifier
that maps directly to a singular meaning, not to a specific word.
It is the meaning therefore that must match when determining
when a Verb object with a given ID can be reused in different
cases.

“Fired” is a commonly cited one, probably because it is the one
used by the specification. The word “fired” has very different
meanings depending on the situation in which it is used. The
specification calls out this fact and suggests that verb IDs be
used to separate these meanings, the problem with that is how
to demarcate the line. For instance are “fired a gun” and “fired a
cannon” different verbs? One could argue that both are for the
rapid expulsion of a projectile, so the same, similarly arguments
can be made that the act of firing the two different instruments
require significantly different skill sets, equipment, etc. which
might make them different verbs. We are left with a gray (or is
that grey?) area that will have to be filled in by systems
consuming the statements and ultimately up to us fallible
humans to step in and create meaning from difficult semantic
relationships. Really only time and adoption can point us in the
right direction when it comes to coining verbs and their
synonyms.

To conclude, I mean to finish, I mean to sum up, I mean to wrap
up… ah, the heck with it! Go now, make statements!

// Page 28

Anatomy of a Tin Can API Statement

Anecdotally, the most common
question asked when starting down the
Tin Can development road is: “How do I
get/create an activity ID?”

CHAPTER 3:
Activity

// Page 29

It seems the simplest place to start with Tin Can is sending a
simple statement, and when showing Tin Can to someone new
we often start with the Actor-Verb-Object structure and give
them the “I did something” example. Satisfying the first two
parts of that structure is fairly straightforward, given an example
statement or two. Most people can easily identify themselves
with an email address which gets them to an Agent for use as
the ‘actor’ pretty quickly, and with a list of common verbs
already widely known, it is easy enough to copy and paste one
of those.

Since Tin Can is intended to be used for tracking experiences,
the natural progression then is to include an Activity in the third
part of the structure — the “something.” Now we run into a
problem, or a bunch of them — nothing to copy and paste,
nothing given to us by someone else to use in the statement.
We are going to have to actually create something!

So what is an activity? Possibly the only thing we can say about
an activity is that it has boundaries. We need a fundamental way
to say that an activity is contained to a specific amount of time
and/or potentially at a specific location. Those boundaries
therefore are physical (or virtually physical, if that can possibly
make sense) and/or temporal. Assuming we can identify a set of
initial boundaries we may then have the ability to subdivide the
area or time encompassed by those boundaries to create
smaller and smaller sets of activities. The granularity with which
we subdivide the activity space matters very little for the simple

// Page 30

Anatomy of a Tin Can API Statement

act of recording statements, but is extremely important to be
able to later derive meaning from a set of statements for
reporting or other types of use.

For instance, if we want to be able to track attendance at a
conference, it may be sufficient to create an activity for the
conference as a whole. But, if we want to know the most
popular speaker at a conference, we will need to have at least
session granularity to our data. If we want to determine the
most popular page on a website, we will need to have a page-
specific activity. But, if we only care about total visitors to a site,
we only need an activity for the site itself.

These are pretty big activities, but an activity can be as small or
short as a particular instant in a video being seen, or something
less physically concrete such as a single question in a quiz.

Beyond defining the boundaries for an activity, it is important to
define relationships between activities. In the above examples, a
“larger” activity was subdivided into smaller activities, which
forms a parent/child relationship. Other relationships can be
indicated via the Tin Can API, and while it is possible to create
statements using an activity in isolation, it is important to think
through how activities can be grouped to realize better
reporting and decision making later in the process. Just as
relationships between people change over time, relationships
between activities are not necessarily fixed. For instance, a

// Page 31

Anatomy of a Tin Can API Statement

session at a conference could be defined in such a way that the
session is given at multiple conferences, so it may be that the
session itself relates to multiple conference activities rather than
being specific to a conference. This increases the reusability of
the activity and can lead to more interesting social reporting
possibilities. Alternatively, there could be a specific conference
session activity and a generic session activity.

Along with the explicit relationships that are defined amongst
activities, there is an implicit relationship within a Tin Can
statement between the activities and the Verb. We covered that
territory in “Statements 101″ so I won’t repeat it here.

An Activity (note the capital “A”) then, as it pertains to the Tin
Can API, is a type of object. The Tin Can specification lays out
precisely the structure of that object and makes some
recommendations on what should be included when creating
statements. The structure of an Activity object is quite basic — it
includes only three properties. The only requirement is an ‘id’
property that has a value that is a URI (got me again, it is really
an IRI). The other two optional properties are the ‘objectType’
which has a value of “Activity” when included, and the
‘definition’ which itself is an object and is where the complexity
of an Activity structure lives.

// Page 32

Anatomy of a Tin Can API Statement

http://tincanapi.com/statements-101/

Identifying

In so far as an Activity identifier is just a URI, constructing one is
trivial. In a web-enabled world, URIs are all around us. Unlike
with Verbs, as described in “Deep Dive: Verbs”, Activities will be
coined liberally and are unique to an Activity, so should only be
re-used when specifically talking about the exact same activity,
and therefore will generally be coined by an Activity
Provider. When selecting identifiers for Activities, the creator
should either own or have permission to use a particular domain
name space to prevent collisions. Care should also be taken so
that the Activity described by a specific identifier is not changed
to reference or be reused for what could be considered a
different activity, after all it is a unique identifier. While the
specification only states that the identifier be a URI, it is
considered a best practice to use a scheme that can ultimately
be resolvable by a large number of applications, such as “http”
and “https”, and to use a fully qualified domain name rather
than some shortened representation as are often seen on
Intranets. These best practices specifically target the
interoperability of systems that the Tin Can API was designed to
provide. Following these best practices will also mean that the
URI may eventually become a URL with the ability to be resolved
to meta data associated with that Activity. Just as with Verbs,
there is no requirement to make URIs resolvable, but forward-
looking systems will do so and minimally need to allow for it to
be done in the future.

// Page 33

Anatomy of a Tin Can API Statement

Some sample identifiers:

• http://tincanapi.com/TinCanJS/Test/TinCan_getStatement/s
ync

• http://tincanapi.com/JsTetris_TCAPI

• http://tincanapi.com/GolfExample_TCAPI

• http://tincanapi.com/GolfExample_TCAPI/GolfAssessment.ht
ml

• http://tincanapi.com/GolfExample_TCAPI/GolfAssessment/i
nteractions.playing_1

Additionally, our Tin Can bookmarklet will take the URL for any
visited webpage and use it as an Activity “id” as the ‘object’ of a
statement automatically.

Definition

Along with the “id”, an Activity object may contain, and should
for statements, a ‘definition’ property that points to an object
itself that contains information about how that Activity is used,
can be displayed, etc. It is important to remember that an
activity has only one logical definition, even though you can
include different definitions in separate statements without
error. The LRS and statement consumers will have to pick what
they consider to be the “right” definition and are free to do so
as they choose.

// Page 34

Anatomy of a Tin Can API Statement

http://tincanapi.com/bookmarklet/

Two optional (but recommended) properties are
straightforward, specifically ‘name’ and ‘description’, with each
being assigned a language map value that contains human-
readable information about the Activity. A new property that
was added in 1.0.0, ‘moreInfo’, provides for including a URL
(IRL), a resolvable location, with more human readable
information about an Activity. The Activity definition is one of
the objects in the Tin Can API that allows for arbitrary extensions
via an ‘extensions’ property (extensions are worth a whole post,
so plan for one soon).

Finally, the Activity Definition object may contain a “type”
property which must have a URI (IRI) as its value. Activity types
are very similar to Verbs in a number of ways. Although they do
not include a separate ‘display’ property, they should be
generically re-usable, may resolve to metadata, and are included
in our Registry. When defining a new Activity via a Definition
object, the creator should take the time to determine whether
there is an existing activity type that matches their activity
before creating a new one. There is a nice list of pre-existing
activity types that were borne out of the specification process
and approved by ADL. We will be adding more to the Registry
very soon, as well as accepting submissions from the community
in a curated fashion.

// Page 35

Anatomy of a Tin Can API Statement

http://registry.tincanapi.com

// Page 36

{

 "id” : “http://tincanapi.com/GolfExample_TCAPI/GolfAssessment.html",

 "definition": {

 "name": {

 "en-US": "Golf Example Assessment”

 },

 "description": {

 "en-US": "An Assessment for the Golf Example course.”

 },

 "type": "http://adlnet.gov/expapi/activities/assessment"

 },

 "objectType": "Activity"

}

Similar to how the specification includes one pre-defined Verb
(see “voided”), one activity type in particular is called out by the
specification to have special meaning, namely an “Interaction
Activity”. This activity type is rooted in the e-learning community
and carries with it special properties that may be defined in the
activity’s definition. Interaction activities should have a type
designated as
‘http://adlnet.gov/expapi/activities/cmi.interaction’, and are
required to have an ‘interactionType’ property. For those not
familiar with the common “interaction” term in the e-learning
community, think of it as a question on a quiz (which is known as
an “assessment”). The specification enumerates the list of
possible interaction types and the associated properties that are
added for each type (which also deserves its own post, man we
have a lot to write).

Anatomy of a Tin Can API Statement

// Page 37

{

 "id":

"http://tincanapi.com/GolfExample_TCAPI/GolfAssessment/interactions.ha

ndicap_3",

 "definition": {

 "description": {

 "en-US": "A 'scratch golfer' has a handicap of ___”

 },

 "type":

http://adlnet.gov/expapi/activities/cmi.interaction,

 "interactionType": "numeric",

 "correctResponsesPattern": [

 "0"

]

 },

 "objectType": "Activity"

}

Parts of a Statement

If the attention to detail paid to the identification and structure of
an activity isn’t sufficient to express its importance to Tin Can,
then the sheer number of places an Activity can be used will. As
indicated by the examples above, a common pattern for the
creation of statements is to include an Activity as the target, or
specifically the ‘object,’ of a statement. The “Actor-Verb-Activity”
is by far the most commonly used statement pattern to date.

Anatomy of a Tin Can API Statement

// Page 38

{

 "actor": {

 "mbox": "mailto:info@tincanapi.com"

 },

 "verb": {

 "id": "http://adlnet.gov/expapi/verbs/attempted"

 },

 "object": {

 "id": "http://tincanapi.com/GolfExample_TCAPI",

 "definition": {

 "name": {

 "en-US": "Golf Example - Tin Can Course"

 },

 "description": {

 "en-US": "An overview of how to play the great

game of golf."

 },

 "type": "http://adlnet.gov/expapi/activities/course"

 },

 "objectType": "Activity"

 }

}

Moving beyond the ‘object’ property, Activities are an essential
part of building context for a statement, so much so that
“context” is a property of a statement that we haven’t gotten to in
our Deep Dive series yet, but wherein there is a ‘contextActivities’
property that itself takes lists of activities. This is where the
relationships amongst activities as mentioned above is codified in
a statement, and to do so, Activity objects themselves are
included. Within the ‘contextActivities’ object, there is the
potential for four lists of activities, specifically ‘parent’, ‘grouping’,
‘category’, and ‘other.’ In each case, one or more activities are
used to provide context for the rest of the statement. The ‘parent’
list suggests a very direct relationship, one that is potentially
recursive through multiple “generations.”

Anatomy of a Tin Can API Statement

// Page 39

{

 "actor": {

 "mbox": "mailto:info@tincanapi.com"

 },

 "verb": {

 "id": "http://adlnet.gov/expapi/verbs/experienced"

 },

 "object": {

 "id":

"http://tincanapi.com/GolfExample_TCAPI/HavingFun/MakeFriends.html",

 "definition": {

 "name": {

 "en-US": "How to Make Friends on the Golf

Course"

 },

 "description": {

 "en-US": "An overview of how to make friends

on the golf course."

 }

 },

 "objectType": "Activity"

 },

 "context": {

 "contextActivities": {

 "parent": [

 {

 "id":

"http://tincanapi.com/GolfExample_TCAPI",

 "objectType": "Activity"

 }

]

 }

 }

}

The other three types provide for more indirect relationships and
are designed to be maximally flexible, but do put more onus on
reporting systems to make correct connections amongst activities.

Beyond Statements

Just as we saw with Agents in “Deep Dive: Actor/Agent”, Activities
are used outside of statements as well. As a key component of
statements, they need to be query-able. Activity objects are

Anatomy of a Tin Can API Statement

// Page 40

matched through the statements query resource by passing the
‘id’ property of the object as an “activity” parameter, this matches
statements where the Activity is the ‘object’ of the statement. To
retrieve statement results where the activity is the ‘object’ or in
other locations of the statement, set the ‘related_activities’ query
flag to “true,” (particularly important when we want to get all
statements from a nested activity using one of the
‘contextActivities’ slots.)

As with Agents, again, Activities get their own API methods as
well. Activities have a profile for storing arbitrary data that can be
used across Agents for all instances of that Activity. The Tetris
game example from the Tin Can Prototypes uses the Activity
Profile API to store a list of high scores for the game (which is the
base Activity). Each time a player finishes a game, that Activity
Profile is accessed to see if their score makes the top ten, and if it
does, then it is inserted into the proper rank location and the
profile data is saved back to the LRS. Along with the Activity
Profile API, an Activity ‘id’ is a required parameter when accessing
the State API. State is then defined as arbitrary data associated
with the combination of a unique Agent and a unique Activity
(we’ll ignore ‘registration’ for the time being).

Be Creative

The Tin Can ecosystem is in its infancy and everyone has a chance
to contribute to how statements will be built, how activities can
be related, and the types of things we can track. This is the chance
to be influential on the community and decide what kind of data

Anatomy of a Tin Can API Statement

http://tincanapi.com/prototypes-getting-started/

// Page 41

model is possible, and likely the most malleable part of the
specification.

Go now, make statements!

Anatomy of a Tin Can API Statement

So many objects, so little
time…”Guacamole is extra, is that
okay?”

CHAPTER 4:
Object

// Page 42

// Page 43

Most anyone first encountering Tin Can will find the “I did this” or
“I did something” pattern for statements, we’ve used it once or
twice ourselves on this site. This refers to the overall basic
structure of a Tin Can statement, in other words, the “actor-verb-
object” pattern. The “something” then is the object of the
statement, and correspondingly the specification includes an
‘object’ property as a required portion of a Tin Can statement.

This seems straightforward; we’ve already seen in this series that
the ‘actor’ property requires an Agent/Group object and the
‘verb’ property requires a Verb object, but the tricky part is that
we don’t get a specific kind of object for use in the ‘object’
property. Instead we get a choice, and just like at Chipotle, making
choices is hard. (Chicken burrito bowl, with a bag of chips by the
way.) Our choice, though not as delicious, is amongst an Activity,
an Agent, a Statement Reference, and a Sub-statement.

Activity

“Activities as objects” is the staple on the menu, the burrito of Tin
Can statements, and by far the most used structure. We explored
Activity objects in-depth in “Deep Dive: Activity”, covering very
quickly that an Activity could be used as the value of the ‘object’
property of statements, and that doing so makes them query-able
by that Activity. Consuming these kinds of statements is
straightforward and somehow makes them feel self contained. I’ll
assume you can find statements with this structure on your own
— there are a couple in the Activity post and thousands in our
public LRS.

Anatomy of a Tin Can API Statement

http://www.chipotle.com/
http://tincanapi.com/2013/07/10/deep-dive-activity/
http://tincanapi.com/public-lrs/

// Page 44

Agent/Group

Coming in a close second on the menu is my favorite, the burrito
bowl. Currently not as common, this statement structure appeals
to me because it starts to extend us beyond the common paths of
other activity streams and further opens up possibilities related to
social networking analysis. Just as with Activities, we covered that
Agents/Groups can be the ‘object’ of statements in “Deep Dive:
Actor/Agent” and that they too are query-able, though in this
case requiring the “relatedAgents” query parameter. What I like to
call Agent-Agent (“Double Agent”? nah, that’s just bad)
statements don’t quite standalone, sometimes they require a fork,
and go quite nicely with chips, but either way, you are going to
have to dig into them to get the deliciousness out.

Some example usages of Agent-Agent statements:

• Brian contacted Mike.
• Brian was introduced to Tim.
• Mork was tutored by Mindy.
• Dr. Pepper met with Patient Zero.
• Mr. Obama defeated Mr. McCain and Mr. Romney (look a

Group!).

In a couple of these statements, we are left without much context
that seems very pertinent in the Activity as object world, but if
our primary concern is about relationships between persons (or
groups of people) then these statements can simplify an activity

Anatomy of a Tin Can API Statement

// Page 45

provider’s work. In the last of these, because of who the Agents
are, we can glean a significant amount of context. (The concept of
Context I’ll talk more about a future deep dive post.)

Here is an example Agent-Agent statement. Note that the
‘objectType’ property is required when the Agent is in the ‘object’
of a statement:

{

 "actor": {

 "name": "Brian Miller",

 "mbox": "mailto:brian.miller@scorm.com"

 },

 "verb": {

 "id": "http://id.tincanapi.com/verb/contacted",

 "display": {

 "en-US": "contacted"

 }

 },

 "object": {

 "objectType": "Agent",

 "name": "Mike Rustici",

 "mbox": "mailto:mike.rustici@scorm.com"

 }

}

Statement Reference

For those wanting to cater to a healthier lifestyle, there is always
the salad. A Statement Reference is a special kind of object — it is
essentially a wrapper around the identifier for an existing
statement. But like with the salad, a statement using a Statement
Reference as ‘object’ carries significant weight with it because all
of the importance of the referenced statement can reflect on the

Anatomy of a Tin Can API Statement

// Page 46

referencing statement. (Cause let’s face it, a salad is really just a
burrito bowl with the lettuce on the bottom and dressing on the
side.) A Statement Reference object has two properties and both
are required: the ‘objectType’ property which must have a value
of “StatementRef” and an ‘id’ with a value of a pre-existing
statement. For example:

{

 "id": "fe2d144f-a5f5-4866-b498-620420fb3a9b",

 "objectType": "StatementRef"

}

There are a number of use cases where a Statement Reference
makes sense as the object of a statement. Naturally, all of them
relate to communications about statements, and some capture
social activities common in other stream-based systems. These
statements may look like the following:

• Brian favorited statement ‘c92dbac8-4a7f-47ac-a508-

64136199c568′
• Ben commented on statement ’1c580b1b-ab27-4836-9131-

9be841139bf9′
• Tim trusted statement ‘a6227fe3-2caa-425a-a939-

45cc661445cf’
• Grumpy Cat voided statement ’89f3403f-92e7-462c-a68c-

547633533439′

That last is particularly important because it is a form that is

Anatomy of a Tin Can API Statement

// Page 47

predefined in the Tin Can specification. The “voided” verb,
specifically the Verb with ID
“http://adlnet.gov/expapi/verbs/voided”, carries special meaning
as covered in “Deep Dive: Verb”. A full voiding statement looks
like:

{

 "actor": {

 "name": "Auto Test Learner",

 "mbox": "mailto:auto_tests@example.scorm.com",

 "objectType": "Agent"

 },

 "verb": {

 "id": "http://adlnet.gov/expapi/verbs/voided",

 "display": {

 "en-US": "voided"

 }

 },

 "object": {

 "id": "29d943ca-fb8f-4e85-ace4-cec8e157ba78",

 "objectType": "StatementRef"

 }

}

After a statement of this form has been issued, the referenced
statement is marked as voided and will no longer be included in
the statement stream. The statement itself is still available in the
LRS, but must be accessed in a direct way, and the voiding
statement itself takes the original’s place in the stream.

Taking out the statement IDs and replacing them with more
readable versions of a statement shows how these types of
statement references can start to be put togther, such as:
• Brian brokered “Tim bought house from Mike”
• Samuel refereed “USA defeated El Salvador”

Anatomy of a Tin Can API Statement

// Page 48

Sub-Statement

Really, the only thing left in my analogy is the tacos and the kid’s
meal, and what better way to describe a Sub-Statement! A Sub-
Statement has all of the basic parts of a Statement itself, the
“actor-verb-object” pattern is still there, but it can’t stand
alone. (Who over the age of 10 really eats a single taco?) Some
properties of normal Statements are forbidden to exist in a Sub-
Statement, and a Sub-Statement has to have an ‘objectType’
property set to “SubStatement”.

{

 "actor": {

 "name": "Brian Miller",

 "mbox": "mailto:brian.miller@scorm.com"

 },

 "verb": {

 "id": "http://id.tincanapi.com/verb/planned",

 "display": {

 "en-US": "planned"

 }

 },

 "object": {

 "objectType": "SubStatement",

 "actor": {

 "name": "Brian Miller",

 "mbox": "mailto:brian.miller@scorm.com"

 },

 "verb": {

 "id": "http://id.tincanapi.com/verb/ran",

 "display": {

 "en-US": "ran"

 }

 },

 "object": {

 "id":

"http://id.tincanapi.com/activity/sample/NashvilleMarathon"

 }

 }

}

Anatomy of a Tin Can API Statement

// Page 49

The English form of Sub-Statements tends to read a little funny,
particularly with verbs usually being seen in the past tense. The
specification calls out one particular use case — the intention of
doing something. In this way, Sub-Statements can be used to
indicate that something will happen in the future rather than
recording something that has happened.

• Brian planned “Brian ran the Nashville marathon”
• Brian un-planned “Brian ran the Nashville marathon”
• Tim scheduled “Ben attended ADL conference call”
• Jena contracted “Mr. Clean provided Jenafits”

Get Creative

In “Deep Dive: Activity”, I talked about the creative possibilities
stemming from the malleability of Activities, but the flexibility
inherent in the ‘object’ property’s value types takes the creative
potential to the next level. Each of these types of objects brings a
different dimension to the Tin Can API, some of which are not
easily expressed in other types of streams. And while each ‘object’
type is important in its own right, the verb-object combination is
the relationship within a statement that allows it to be so
expressive. Utilizing all of the options in different pairings allows
learning systems and non-learning systems alike to frame a
pattern of use that elevates reporting and comprehension beyond
what has been possible in the past.

The only remaining question is “if I have a burrito bowl today,
Wednesday, do I get a burrito, a salad, or another bowl (!) on

Anatomy of a Tin Can API Statement

// Page 50

Thursday?”

Go now, make statements!

Anatomy of a Tin Can API Statement

In the other posts in this series I’ve
covered some big topics with a post
each, but not all properties of Tin Can
statements need quite so much
attention.

CHAPTER 5:
Extras/Others

// Page 51

// Page 52

The Actor-Verb-Object pattern commonly pointed out as the basis
of Tin Can statements is tremendous for deriving meaning from
an experience, but there are several top-level properties that are
specifically geared towards the mechanics needed to make the Tin
Can API function well. Though they usually get less attention,
particularly from non-developers, it is the combination of all of
the properties that makes the specification such an achievement.
This list of non-elegant, but absolutely critical properties includes
‘id’, ‘timestamp’, ‘stored’, ‘authority’, and ‘version’. All but one
have a “simple” value (meaning non-object), and enable specific
usages, but also come with their own unique quirks.

ID

The ‘id’ property stores a simple string value, and that string must
be a UUID (aka GUID). The short version is that a UUID is a
Universally Unique Identifier, and it is the very strict meaning of
“universally” that matters in the Tin Can API specification. For Tin
Can API statements to provide interoperability they first have to
be transferrable from one LRS to another, to make that possible
the identifier of a statement can’t be unique to only one system;
therefore it must have a universally unique identifier, or an
identifier that will never collide with one generated by some
other system, whether that system is an LRS or an Activity
Provider. How to generate UUIDs is beyond the scope of this post,
but most programming languages have commonly available
libraries, built in types, or at least sample algorithms for
generating them efficiently. An example UUID looks like:

Anatomy of a Tin Can API Statement

http://tools.ietf.org/html/rfc4122

// Page 53

b1d6c3ea-4345-48a2-95ee-d6aea74cef59

All statements stored in an LRS must have an ‘id.’ The specification
purposely leaves it up to the Activity Provider to decide if they
want to generate statements with pre-set IDs, though indicates it
is a best practice to do so. However, if the Activity Provider does
not send an ‘id’ property as part of a statement one will be
created and assigned by the LRS. While the above looks like just a
series of dash delimited numbers and letters generating a UUID
must follow a particular algorithm, it’s critical to generate proper
UUIDs to avoid collisions. While creating your own is
recommended, it’s much better to let the LRS assign a good UUID
than to generate them improperly (they should always be
computer generated, not manually created).

Statement IDs are useful for retrieving specific statements, for
instance by systems that implement favoriting or perhaps badges,
via the LRS Statement API which takes the ‘id’ as a query
parameter. Additionally, as mentioned in “Deep Dive: object” the
‘id’ property is necessary for leveraging Statement References,
such as when voiding a statement.

Timestamp

The ‘timestamp’ property’s value is an ISO8601 date+time value in
a string format that indicates when the statement was created
and whose intention is to capture when the experience occurred.

Anatomy of a Tin Can API Statement

http://en.wikipedia.org/wiki/ISO_8601

// Page 54

2013-08-20T14:22:20.028Z

Like with the ‘id’, the ‘timestamp’ value will be set by the LRS if
not set in the statement by the Activity Provider. Here is an
example timestamp value:

Note that ‘timestamp’ values have sub-second precision and must
contain a timezone, so implementing systems should be prepared
to deal with these (the ‘Z’ above represents UTC, time zones are
well beyond the scope of this post). It is intended that ‘timestamp’
values represent either a past time or the current (soon to be
past) time. The specification does specifically call out the case of
future timestamp values as being useful in SubStatements where
it is expected that a related statement will be sent at or near that
future time. Naturally when that occurs, both will then be in the
past. The notion of timestamps in the past matches up well with
the expectation that verbs use past tense and that statements can
only capture what has occurred.

The ‘timestamp’ property is one of the mechanical items that
allows Tin Can to function in an offline mode. When offline,
statements can be created with an accurate ‘timestamp’ value
even though they will not reach the LRS immediately. Reporting
tools can then leverage the ‘timestamp’ to properly order what
occurred. This also helps facilitate queuing mechanisms that may
be online, but want to batch report statements for performance
reasons. In a similar sense, it is also possible to capture historical

Anatomy of a Tin Can API Statement

// Page 55

events that happened well before the specification existed, for
instance I could capture a set of learning records for my school
years based on offline records that I’ve kept. The lack of accuracy
of the timestamps should be considered, but I could certainly
capture experiences close to when they occurred. For instance
based on various records I could create a statement for my college
graduation at “1999-06-12T14:00:00-04”, the date is accurate, the
time zone is accurate, the time itself is a little rough but may be
meaningless in a timeline spanning decades.

Timestamps can also help provide meaning in statements. In some
cases the ‘timestamp’ value could be sufficient to determine
unique context for a given experience. For instance a timestamp
in a statement about a conference may imply conference
attendance for the given date. When used in conjunction with the
‘duration’ property of the Result object (a future blog post topic) a
reporting system can determine overlapping experiences and
have another dimension for comparison.

Stored

Along with ‘timestamp’, the ‘stored’ property’s value is an
ISO8601 date+time value, but has a very different meaning. The
‘stored’ property’s value is purely about the mechanics of the API
and as such is set by the LRS when that LRS receives the
statement. The ‘stored’ value is then leveraged via the Statement
API’s query resource for providing the statement stream in one
specific order, and optionally including only a range of statements.
For instance a system may periodically poll an LRS for

Anatomy of a Tin Can API Statement

// Page 56

only new statements since a specific point in time using the ‘since’
query parameter. Alternatively, the ‘until’ query parameter allows
for requesting statements stored before a point in time. It is
important to understand that the ‘stored’ value for a given
statement retrieved from two different learning record stores may
be different.

Authority

The ‘authority’ property is another that will most often be set by
the LRS, but has an object value. Specifically, the ‘authority’ will
contain an Agent or Group object which I covered in the “Deep
Dive: Agent/actor” post. When the statement is stored using 3-
legged OAuth, the ‘authority’ will contain a non-identified Group
with two members, one for the user and one for the application,
otherwise it will hold an Agent representing the user connecting
to the LRS.

The authority represents how that statement ended up in the LRS
and correspondingly suggests the level of trust of that statement.
The level of trust of a statement is directly related to the level of
trust of the authority, and the level of trust of the authority is
relative; it is the level of trust you have in that authority, and
therefore the level of trust you have in a statement. A statement
where the ‘actor’ and ‘authority’ match, for instance, has the
lowest level of trust as it was self generated. A statement where
the ‘authority’ is a single Agent but different from the ‘actor’ will
often have a higher level of trust, assuming that the authorizing
Agent is trusted. The level of trust of a particular Agent can vary

Anatomy of a Tin Can API Statement

based on how hard it is to assume control of that Agent. For
instance, an automated system with significant security controls
will likely have a higher degree of trust than a normal user
accessing an LRS through a public web interface. The 3-legged
OAuth method should provide the most trust because it is based
on two parties both agreeing that a statement should be
generated, in this case the user has agreed to let the application
speak for them and that the application indicates that the
experience has occurred.

While the handling of the ‘authority’ property is fairly mechanical
in nature, it is the notion of trust that lends to taking meaning
from a statement, and as extension how someone will act on the
information conveyed by that statement. For example, a pile of
statements created by an accredited university may carry more
weight in a job interview than those generated by a bookmarklet,
or statements generated by a heart monitor machine in a hospital
room will be trusted over those generated by manually entering
pulse information in a phone app when diagnosing heart
conditions.

Version

The ‘version’ property is one of the newest additions to the Tin
Can Statement specification. It indicates what version of the API
was in use when the statement was recorded, and can be
leveraged by systems consuming the statement stream to
properly parse and otherwise handle the statement structures
without having to make assumptions about the statement version

// Page 57

Anatomy of a Tin Can API Statement

// Page 58

from its structure. In general this property will be set by the LRS,
reserving pre-setting of its value for LRS to LRS transfers. Because
this property didn’t exist until the 1.0.0 specification, statements
retrieved from an LRS using the prior draft specifications will not
include this property.

While talking in generalities about the Tin Can API specification,
and specifically the Statement structure, it is easy to lose sight of
the fact that the meaning we so desperately want to capture has
to be codified in actual data elements. But the data elements
most often conveyed via “I did X” aren’t sufficient to developers
building real systems, particularly interoperable ones. The
essential components for meaning combined with the more
mechanical ones outlined here make a well rounded specification
that can work for both implementers and users (Activity
Providers) of learning record stores and the associated web
service resources.

Go now, make statements!

Anatomy of a Tin Can API Statement

Although not required, most
statements are going to need to
include some additional context to
convey the extent of their meaning.

CHAPTER 6:
Context

// Page 59

With two toddlers at home, I’m fairly used to short, choppy
sentences as a manner of communication. I have whole books
filled with them, granted they are only about 15 pages long with
type even my grandfather can see. And while most of the time I
can get my point across, and usually even so can the toddler, and
the books are certainly appealing (to at least one of us), I am
excited for my daughters to get to explore the richness that is
language, particularly one as “colorful” as English. The same can
be said of Tin Can API exploration (though not necessarily by my
daughters). While the Actor-Verb-Object structure is critical for a
bare minimum of understanding, it is the context of the statement
that gives it life and, dare I say beauty (okay, that’s a bit of a
stretch even for me).

Although not required, most statements are going to need to
include some additional context to convey the extent of their
meaning. One way to capture additional meaning takes the form
of a Context object placed in the ‘context’ property of the
statement. All properties of the Context object are optional, and
they may be mixed and matched as needed with only a few
restrictions. There are nine Context properties ranging from the
very specific ‘registration’ to the completely open ‘extensions’.

contextActivities

I’ve already touched on the ‘contextActivities’ property in the
“Deep Dive: Activity” post. As mentioned there, the
‘contextActivities’ property takes an object as its value as well.
This object has four optional properties itself, specifically ‘parent’,

// Page 60

Anatomy of a Tin Can API Statement

‘grouping’, ‘category’, and ‘other.’ These properties take the same
type of value, either a list (array) of Activity objects or a single
Activity object. The Activity objects included in these lists form
the relationships amongst Activities and provide structure to what
would be otherwise isolated experiences. Placing an Activity in
one of the ‘contextActivities’ properties allows it to be queried via
the Statements API using the ‘related_activities’ parameter.

Using the ‘parent’ property generally implies that the Statement’s
object is itself an Activity, specifically one that is a sub-Activity of a
larger whole. The other properties have looser relationship
qualities, but the specification does call out specific meanings for
each. The ‘category’ property relates to a statement as being part
of a “profile” such that it adheres to some known, expected use
case. The ‘grouping’ property allows statements to be associated
based on their object’s Activity as part of a larger whole but
without the direct subset correlation as with ‘parent.’ Finally,
‘other’ is for catching any other use cases not defined directly in
the specification.

Registration

The ‘registration’ property has its roots in the LMS (Learning
Management System) / SCORM world so is related to the concept
of a registration there which is tied to when a learner is enrolled
or enrolls for a particular experience. This property takes a UUID
(or GUID) value as a string just like the ‘id’ property as covered in
“Deep Dive: Extras/Others”. Fundamentally, it is in the
specification to support the concept of identifying a specific

// Page 61

Anatomy of a Tin Can API Statement

instance of a person (or persons) having an experience which
need not be recorded as a single statement and it is not restricted
to be used in statements for a specific Agent or Activity. In the Tin
Can space, an experience may be captured with many statements
from multiple points of view and be made up of numerous
activities, the registration value then can be used to tie all of them
together.

For example, in the Tin Can Prototypes JS Tetris game, the top
level Activity is consistent and a single Agent may play multiple
games which generate numerous statements (one for each level
reached, etc.); therefore it is not sufficient for us to look at
statements for just the Agent and Activity combination to
determine statements unique to a played game. We could try to
piece the single game experience together based on a starting
and ending statement and a range of timestamps, but this is
overly error prone and a little too clever. Instead, each new game
is assigned a registration which is included in the Context of the
statements generated for that instance of the experience. This
makes it possible to discern the set of statements making up a
unique game amongst all of those played by a specific Agent using
that Activity.

To facilitate the use case intended for ‘registration’ it is a property
that is exposed via the Statements query API. In other words, a
client can query the LRS directly for the statements that have a
specific registration. Additionally, the registration concept can be
applied to the State API as an optional component of what makes
a document unique.

// Page 62

Anatomy of a Tin Can API Statement

http://tincanapi.com/prototypes/

// Page 63

Instructor

The ‘instructor’ property takes a value that is either an Agent or
Group as covered in the “Deep Dive: Agent/actor” post. This value
is fairly specific to learning experiences, the intended use case for
Tin Can API after all, and will likely correlate to certain kinds of
verbs. This property is hopefully self explanatory, though need not
be confined to a “formal” instructor as informal training
experiences occur commonly between two Agents. Statements
with an ‘instructor’ property might read like: “Brian learned Tin
Can from Ben (instructor).”

Team

The ‘team’ property requires a Group object as value. I’ll admit, I
struggled with the meaning of this one so sought out advice from
my team (turns out it was a team of one, but whatever). The key to
the ‘team’ property’s meaning is that it is useful when a singular
Agent (or subset of a Group) performs an action that is part of an
experience where it is important to recognize the team as part of
the context. For instance, during a car race a pit crew may
constitute a team, but only one member is involved in refueling
the vehicle during each stop, so a statement might be created for
“Brian refueled Car 33 during pit stop 2 (performed by) team Red”
where the “performed by” is inferred from the ‘team’ property
having a value. In the training space, you could think of a team of
physicians and nurses running a disaster drill where each has an
assigned task, but each task contributes to the common objectives
of a single team. Without a complete,

Anatomy of a Tin Can API Statement

cohesive set of tasks performed correctly by each member as the
team as a whole the overall result of the exercise could be failure.

Statement

In “Deep Dive: object” I talked about Statement References.
Statement References can be used as the ‘object’ of the
statement, but in the case where another object, perhaps an
Activity, makes more sense in that position a Statement Reference
can still be used as context within the Context object’s ‘statement’
property. There was also a section of that post that talked about
Sub-Statements and how they can be used to indicate a future
event. As an example, the ‘statement’ Context property would be
a great place to capture a reference to the original “planning”
statement in statement(s) generated when the event finally
occurs.

Revision

The ‘revision’ property takes a string value that has a free form
value. Additionally, the specification precludes the use of this
property when the ‘object’ of the statement is an Agent or Group.
The value of this property is intended to capture small or minor
edits made to an experience, where minor edits include typos or
spelling errors. More significant edits, where meaning itself may
have changed, should be handled through updates to Activity IDs,
etc. It is important to remember that this ‘revision’ property is
context for the statement rather than part of the definition of a
single Activity. It has roots in the “packaged learning world” and is

// Page 64

Anatomy of a Tin Can API Statement

provided primarily to capture the small revisions where a package
may change but an accompanying change to a new Activity ID was
not required.

Platform

The ‘platform’ value takes a string as well, and equally free form,
and again must not be used with an ‘object’ that is an Agent or
Group. Because experiences, specifically learning activities, may
be delivered in multiple ways this property is intended to capture
information about how, or possibly where, the experience
occurred. For instance, it might have been delivered via an “online
course” or “in person” or perhaps via a “simulator.” It may be the
case that these have different Activity objects with unique IDs, but
it may also be meaningful to capture all of the ways that someone
can experience the same learning objective such that the delivery
method is merely context.

Language

International interoperability is particularly important to the Tin
Can API specification and the ‘language’ Context property
provides a way to capture the language of the original experience
when known and identifiable. The value for this property should
be a string with an RFC 5646 formatted value, the same as the
keys that make up the language maps used elsewhere in the
specification, such as the ‘display’ property of verbs and the
‘name’ property of Activity Definitions. Combining those language
maps with the ‘language’ context can provide a fuller picture of

// Page 65

Anatomy of a Tin Can API Statement

// Page 66

the actor’s experience.

Extensions

The ‘extensions’ property may occur in a couple places in a
statement, another place is the Activity Definition as mentioned in
the “Deep Dive: Activity” post. Extensions warrant their own post
which is coming soon, but essentially it is a catch all for any other
context that could possibly be relevant to this specific statement.
For some examples of Extensions for use in Context, check out
registry.tincanapi.com.

The Context object provides such a varied set of values it is a
shame to not include as much information in a statement as is
possible. In these early days of Tin Can API adoption, the simple
statements win out as it seems we are but mere toddlers
exploring a new language, or at least a new way to structure our
language. As adoption increases, so will the complexity of the
experiences we are able to capture. I feel we’ve wished to capture
them for a long time, now we are empowered to, and the harder
task of drawing meaning from all the contextual elements still
awaits us.

Go now, make statements!

Anatomy of a Tin Can API Statement

https://registry.tincanapi.com/

Statements have an optional ‘result’
property that can be used to capture a
“measurable outcome” from an
experience.

CHAPTER 7:
Result

// Page 67

// Page 68

So far throughout the Deep Dive series that I’ve been writing,
there has been one thing notably lacking, e-learning. It turns out
that the framers of the Tin Can API specification hit on something
big enough that it need not be boxed in by just the e-learning
world, and so far we’ve seen a lot of adopters thinking outside the
typical e-learning sphere. But there is a history there, and the
work on the Tin Can API specification was born out of a real desire
to advance the specific space around e-learning. The Result object
is there to capture some of what is not already catered for and
make sure the Tin Can API can first, and maybe foremost, flourish
in the e-learning space, though even it doesn’t have to be used
only for e-learning.

Statements have an optional ‘result’ property that can be used to
capture a “measurable outcome” from an experience. The value
of the ‘result’ property is specifically a Result object which has a
number of properties designed to capture the types of results that
have historically been generated from learning activities. The
properties of the Result object are ‘success’, ‘completion’,
‘response’, ‘duration’, ‘score’ and ‘extensions.’ For readers used to
SCORM, these properties have direct analogs to the data you are
already capturing, but in Tin Can all properties are optional and
the specification doesn’t indicate how they must be used
together.

Success

The ‘success’ property takes a boolean value (true/false) and
provides for a pass/fail categorization of an Activity. It is an

Anatomy of a Tin Can API Statement

// Page 69

important distinction that the specification says Activity in its
description of ‘success’ because it is possible for an experience to
be made up of more than one Activity, particularly when the
experience is easily sub-divided. It is entirely possible for an
overall experience to be a success or failure with individual sub-
activities having the opposite value. For example, the ‘success’
property of a statement capturing the answering of a question
might be ‘false’ (or failure), but within a statement capturing a
summary of the overall quiz the Result object’s ‘success’ property
might be ‘true’ (or pass).

Completion

The ‘completion’ property is a Boolean value (true/false) as well
and captures whether the Activity was completed. This is
somewhat confusing in light of the very commonly used
“completed” (http://adlnet.gov/expapi/verbs/completed) verb.
The key here is that the ‘completion’ property is a part of the
specification and indicates that based solely on this statement it
can be determined that the actor has done what is required to
consider the Activity completed. The commonly used “completed”
verb may indicate the same thing for a particular profile, but that
is not captured by the specification itself, it is profile specific. The
Tin Can specification provides for flexibility in how systems will
react to the data stored, the ‘completion’ property is very much
intended to capture the concept of “completion” as it is in the
LMS AICC/SCORM world.

Anatomy of a Tin Can API Statement

http://adlnet.gov/expapi/verbs/completed

// Page 70

Duration

Continuing the tradition of well named properties, the ‘duration’
property takes a value indicating the length of time taken for the
experience captured by the statement. The value is a string but
must be formatted using the ISO 8601 standard and is specified to
have a maximum precision of 0.01 seconds. Activity Providers
need to pay particular attention to the notion of precision with
the ‘duration’ property. For example, two values that are both
acceptable based on the formatting requirements are “P1M” and
“P30D”, but in the first case we can only read this as one month
which may be any of 28, 29, 30, or 31 days whereas in the latter
we know this to be explicitly 30 days. Because of the requirement
to use an ISO 8601 formatted value, arbitrary units can’t be
included as a duration easily, that is, the duration can’t be
something like “12 slides” or “3 courses” in that case separate
statements or an extension is probably the best practice.

As I mentioned in “Deep Dive: Extras”, the ‘duration’ property can
work together with the ‘timestamp’ property to give an indication
of precisely when and for how long an experience took place
allowing reporting systems to do interesting things with time
overlaps. One interesting point brought up by Andrew Downes via
GitHub is that the specification leaves open when in relation to
the life of the experience the ‘timestamp’ occurs. The bottom line
seems to be that if the duration is going to be used in relation to
the timestamp that there is an agreement between the two and
reporting systems need to take this into account. Consensus
seems to be favoring that the

Anatomy of a Tin Can API Statement

https://en.wikipedia.org/wiki/ISO_8601
https://github.com/adlnet/xAPI-Spec/issues/337
https://github.com/adlnet/xAPI-Spec/issues/337

// Page 71

‘timestamp’ represents the ending point of the duration when it is
included.

Response

The ‘response’ property takes a string as its value which has a
format that is Activity specific which is to say it can store virtually
anything. This value could correspond to text entered by a user to
answer a question, or a serialized true/false answer, or the
identifier for an answer in a multiple choice question, etc. When
using the predefined “cmi.interaction”
(http://adlnet.gov/expapi/activities/cmi.interaction) Activity Type
the value should correspond to one of the entries in the
‘correctResponsesPattern’ property.

Score

Unlike the others in the Result object, the ‘score’ property takes
an object itself, the Score object which has its own set of
properties. The Score object’s properties are all optional and each
is a decimal number. These properties, ‘scaled’, ‘raw’, ‘min’, and
‘max,’ correspond directly to the CMI properties from the SCORM
2004 specification. The ‘raw’ value corresponds to a nominal
value and when they are provided it must be between the values
of ‘min’ and ‘max.’ Those two properties, ‘min’ and ‘max,’
correspond to nominal values marking the starting and ending
point of a range of values. If the ‘raw’ value can be calculated as a
percentage, then it is expected that the ‘scaled’ value is populated
with a value between -1 and 1. For example, on a 25 question quiz

Anatomy of a Tin Can API Statement

http://adlnet.gov/expapi/activities/cmi.interaction

// Page 72

a user may get 20 questions correct, corresponding to a ‘raw’
value of ‘20’ and a scaled value of ‘0.8’ (or 80%), ‘min’ could be
included as ‘0’ and ‘max’ as ‘25.’

One important note, the specification indicates that the Score
object and associated properties should not be included for
determining progress or completion. Presumably the ‘completion’
boolean property in the outer Result object should be used for
the latter, and an extension is recommended for the former.

Extensions

As we saw in “Deep Dive: Context” and “Deep Dive: Activity”, the
‘extensions’ property holds an object of catch all data that is
necessary to capture the meaning of the result. An example of an
extension that might be useful in a Result object that we’ve
already added to The Registry is “Ending Position,”
http://id.tincanapi.com/extension/ending-position. For example,
it can be used to indicate the final place of a runner in a race.
(More about extensions is coming in a future post.)

Leveraging the elements of a Result object in a Tin Can statement
facilitates conveying information about what happened during an
experience and directly lends itself to tracking objective
outcomes. It gives us a way to measure the performance of an
Agent when interacting with an Activity, particularly those that are
prescribed to the task of assessing capability associated with a
learning process. The Result object captures the essence of the
Tin Can API being forged from past experience in the learning

Anatomy of a Tin Can API Statement

https://registry.tincanapi.com/

// Page 73

standards world and provides an easier path forward for existing
content created for the formal training model.

Go now, make statements!

Anatomy of a Tin Can API Statement

Several times throughout the Deep
Dive series, I’ve mentioned “catch all”
objects and a future post — here it is.

CHAPTER 8:
Extensions

// Page 74

// Page 75

The framers of the Tin Can API specification knew that the overall
structure of a statement, particularly with its oft mentioned Actor-
Verb-Object pattern, could capture a great deal of information
about learning experiences, but they also realized that there was
no way for them to account for all types of experiences that
people wished to record. So they left an out in the form of
‘extensions’ properties.

These ‘extensions’ properties take a special kind of object where
the set of available properties is not known ahead of time, unlike
all other objects in the specification. It is this unique structure
that leaves it up to the Activity Provider to decide what to
capture, and to own how it will be captured.

The ‘extensions’ property takes as its value an object where the
properties of that object are strings in the form of URIs and the
values can take any form, including objects. Using URIs as the
properties allows for the identifiers to be owned via domain
ownership, and therefore prevents the possibility of collisions as
long as people respect that ownership. This means that to create
(or coin) a new Extension property you should do so in a domain
that you own, control, or have been given permission to use.

Here are two example Extension objects, one used to include an
ISBN (a book identifier), and the other used to specify a starting
point and ending point (perhaps page numbers):

Anatomy of a Tin Can API Statement

// Page 76

{

 "http://id.tincanapi.com/extension/isbn": "978-1449304195"

}

The ‘extensions’ property can be used in multiple locations within
a statement, specifically the Activity Definition, Context, and
Result objects. The first example above, the ISBN, would be a
perfect fit to include in an Activity Definition for a book Activity.
Another key is that specific ‘extensions’ properties can be used in
any of these positions. In other words, the starting/ending point
properties could make sense in the context of one statement and
the result of a different one. The second example above might be
used by a teacher to assign a student a set of pages to read which
might be included in the context of a statement about the
assigning, while the same object might be used in the result of the
statement capturing the student’s reading of those pages.

As mentioned, the format of the value for an Extension property is
left open which is both maximally flexible for Activity Providers
and problematic for reporting systems. In the above example the
page numbers are captured as integers (or more specifically
numbers), but some other starting point may need to be captured

Anatomy of a Tin Can API Statement

{

 "http://id.tincanapi.com/extension/ending-point": 36,

 "http://id.tincanapi.com/extension/starting-point": 48

}

// Page 77

as a string. There is no right answer as to whether an extension
will always have the same formatted value or not.

Using different types of values with the same identifier is
problematic for systems that will leverage the data from the
statements later. In some cases, distinguishing the format will be
straightforward and reporting systems will be able to handle it
relatively easily. In other cases, there will be a clear format that an
extension value must use. For example, the
“http://id.tincanapi.com/extension/geojson” extension has a very
precise value format based on the GeoJSON specification. The
ISBN extension property used earlier always takes a string but a
user must examine the length to properly handle it. Still other
times it may be left up to the context in which the property is
used as to how to handle its value. This is the trickiest of cases
and one which has been coming up in conversations around Tin
Can API more and more frequently. Extension coiners should
consider including in the description of their extension (more on
that below) information about what form the value should take.
The example of the ISBN specifically includes:

Value should be either a 10 digit ISBN or 13 digit ISBN string.
Either value is acceptable as implementing systems can easily
distinguish the two based on the length of the value.

This allows developers to understand whether an extension will
serve their purpose or not, and by conforming to the definition
provided, they can expect their usage to interoperate with others’
usages.

Anatomy of a Tin Can API Statement

http://id.tincanapi.com/extension/geojson
http://id.tincanapi.com/extension/geojson
http://id.tincanapi.com/extension/geojson
http://id.tincanapi.com/extension/geojson

// Page 78

Unlike other objects in a Statement, because the extension
property URIs are the Extension object’s properties themselves,
there is no place to provide metadata information about the
property itself. In other words, there is no “local” way in the
statement to provide a human readable name for the extension
property or the description needed to explain how that extension
property is to be used. This is another key to using URIs as the
representation of the properties — many of them are easily
convertible to URLs. Specifically using a URL and making that
address resolvable enables a way to fetch metadata about the
extension property. The format of the metadata is specified in the
Tin Can API, when resolving the URL with a request for content-
type of “application/json” the host should return a JSON object
including a “name” and “description” properties whose values are
language map objects as seen elsewhere in the specification.
By example, fetching the resource for an extension property such
as “http://id.tincanapi.com/extension/tags” will return:

Anatomy of a Tin Can API Statement

{

 "name": {

 "en-US": "tags"

 },

 "description": {

 "en-US": "A list of arbitrary tags to associate with a

statement.

 Value of the extension should be an array with each

tag being

 a string value as an element of the array."

 }

}

http://id.tincanapi.com/extension/tags
http://id.tincanapi.com/extension/tags
http://id.tincanapi.com/extension/tags

// Page 79

As described in other posts in this series, The Registry has been
created to catalog available extensions to assist with
interoperability. New Extension properties can be created in the
“id.tincanapi.com” domain using the web interface to ensure that
they can always be resolvable. Other extension properties can
also be recorded to make them easier to find. There is a nice and
ever growing list of extensions already listed, some of which we
pre-populated in anticipation of their need by the community.
Browsing the list is an excellent way to see the extent of the
varied ways extension properties can and will be used.
Additionally, ‘extensions’ are also prescribed for use in the
“/about” resource that an LRS must provide, though including the
property isn’t specifically required at this time. An example is the
“powered-by” extension as part of the /about resource result on
SCORM Cloud, it returns:

Anatomy of a Tin Can API Statement

{

 "extensions": {

 "http://id.tincanapi.com/extension/powered-by": {

 "name": "Tin Can Engine",

 "homePage": "http://tincanapi.com/lrs-lms/lrs-for-lmss-

home/",

 "version": "2012.1.0.5039b"

 }

 },

 "version" : ["1.0.0"]

}

https://registry.tincanapi.com/

// Page 80

“With great power comes great responsibility,” or so it is said, and
using “extensions” is no different. With its flexibility it is simple to
turn to the easy way out and just shove any data into an Extension
when selecting a more complex statement structure or being
more specific about an Activity may be more suitable. Even within
our own walls, we recently had a conversation about using an
Activity with a specific Activity Type rather than using an
Extension property with a value that would be a URI itself. It
turned out we didn’t need to use “extensions” at all and were
better served by using Context activities in its place.

Go now, make statements!

Anatomy of a Tin Can API Statement

As network speeds and the processing
power of devices improves, the size of
the files we use to capture our
experiences, be they photos or other
graphics, videos, or complex
documents, increases. We need a way
to associate these ever-growing files
with the metadata capturing the rest of
the experience.

CHAPTER 9:
Attachments

// Page 81

// Page 82

As network speeds and the processing power of devices improves,
the size of the files we use to capture our experiences, be they
photos or other graphics, videos, or complex documents,
increases. We need a way to associate these ever-growing files
with the metadata capturing the rest of the experience. This data
comes in all shapes and sizes, particularly these days, and as
flexible and readable as JSON is, it isn’t great for capturing large
amounts of binary bits, but the Tin Can API specification allows for
including attachments with statements for this purpose.

Attachment handling is implemented through a combination of an
‘attachments’ property of the Statement object itself and optional
inclusion of copies of the files themselves. Note the use of plurals
here, a single Statement may be associated with multiple files,
therefore the ‘attachments’ property of a Statement takes an
array as its value. The elements of this array are objects with
properties, some required and some optional, that provide
metadata about the included attachment.

Required Properties

The required properties of an Attachment object are “usageType”,
“display”, “contentType”, “length”, and “sha2”. Three of these
properties, “contentType”, “length”, and “sha2” describe specifics
about the contents of the attachment. The other two indicate
how this attachment is to be used related to the Statement’s
meaning.

Anatomy of a Tin Can API Statement

The “contentType” is the RFC2046 media type (or MIME type) of
the file, such as “application/pdf” or “text/plain” which instructs a
system how the data can be parsed, etc. The “length” property’s
value is an integer that specifies the size of the attachment in
octets. The “sha2” property’s value is a string representing the
SHA-2 hash of the contents and is ultimately what is used to
uniquely identify an attachment listed within the statement with
the file included in a request. The length of the string value can be
used to determine which bit size algorithm was used to generate
the hash.

The “display” property takes a language map as its value and gives
a human readable name for the attachment similar to the same
named property included in a verb. Lastly, the “usageType”
property’s value must be a URI (IRI) and describes the “why” of
the attachment. The “usageType” serves a similar purpose for
Attachments as the “activityType” property does for Activities.
(More about usage types below.)

Optional Properties

Along with the required properties, Attachment objects may also
include a “description” property and a “fileUrl” property. The
former is similar to the “display” property and takes a language
map as a value. The language map provides a longer, human
readable description of the purpose of the attachment or other
information about it. The latter takes a URL from which the
attachment’s data can be retrieved, or at least could have at one
time. The “fileUrl” property is what makes it optional to include

// Page 83

Anatomy of a Tin Can API Statement

// Page 84

the file contents themselves with requests including the
Statement, however either the “fileUrl” or the file itself should be
provided when storing the statement.

Here is an example of a Statement with an “attachments”
property with a single Attachment object:

Anatomy of a Tin Can API Statement

{

 …

 “attachments”: [

 {

 “contentType”: “application/pdf”,

 “usageType”: “http://id.tincanapi.com/attachment/certificate-of-

completion”,

 “display”: {

 “en-US”: “Completion of Tin Can API 101”

 },

 “description”: {

 “en-US”: “Certificate provided as proof of completion of Tin

Can API 101 course.”

 },

 “length”: 63878,

 “sha2”:

“c2a36cbc4db66444d05e134b85a89681f65263cacd93eb4a544f0bef058a5649”

 }

]

}

This example might be included by a course when sending a
statement indicating completion of the training, and includes a
printable certificate that the participant can provide for
compliance reasons.

// Page 85

Inclusion of Files on Requests

Just as with the basic parts of the REST interface the Tin Can
specification piggybacks on existing, commonly used
specifications for inclusion of file attachments in requests,
specifically the multipart handling portion of the MIME standard
via RFC 1341.

That can be a bit much to take in, so here are the fundamental
parts. When including attachments as files in statement requests,
the content type of the request becomes “multipart/mixed”. In a
multipart/mixed request there will be multiple sections of content
separated by block markers, each with a set of headers and a
body. The first section (or part) will have the “application/json”
content type and the body will contain the normal Statement(s)
payload as requests without included files. Each subsequent part
will include a special header, specifically the “X-Experience-API-
Hash” header, whose value will match the SHA-2 stored in the
“sha2” property of the Attachment object of the Statement’s
“attachments” property (in other words, what I talked about
above). This is how, for a given request, a system can match up
the file included in the request with the metadata for that
Attachment included in the Statement.

That covers the basics, but there are a lot of rules in the MIME
standard about how boundaries between parts are composed,
how headers and encodings should be handled, etc. I suggest
using a well tested library for MIME handling. Additionally, there
are a number of rules about how LRSs and Activity Providers

Anatomy of a Tin Can API Statement

http://www.w3.org/Protocols/rfc1341/7_2_Multipart.html

// Page 86

should act when encountering or sending requests with files.
Those topics are really best covered by a deep read of the
specifications themselves.

Use Cases

The completion certificate example is likely a common use case
for attachments for the e-learning industry, but like the rest of the
Tin Can API, there is virtually unlimited scope for what could be
handled. Signed electronic contracts for real estate transactions or
other types of legal exchanges could be attached to statements.
As more retail stores switch to fully electronic operations, receipts
could be sent attached to statements for a sale. The TCDraw early
prototype captured a dynamically generated image showing a
handwriting exercise, at the time attachment support was not yet
in the Tin Can API specification so it uses Extensions, but could
(and should) be updated to use attachments instead. Because
Attachments include the hash of the contents as an identifier, the
same attachment can be easily associated with more than one
Statement. For instance you could send your résumé as an
attachment when applying for a job, then the hiring manager may
include it along with a signed employment contract notifying HR
of a new employee. The contents of the file itself may only need
to be sent once, but it could be referenced in multiple statements.
These are just a couple of use cases, the possibilities are
unlimited.

Anatomy of a Tin Can API Statement

http://tincanapi.com/2012/11/12/new-experiment-tin-can-draw/

// Page 87

Statement Signing

While each of the use cases above are fairly realistic, the
specification includes one use case for attachments, specifically
statement signing. A statement may be signed to guarantee the
ability to verify authenticity, who is asserting the statement, and
integrity, that the statement has not been altered. To do so the
original content of the statement is serialized and included in the
signature such that it can be later decoded and compared with
the recorded statement for logical equivalence. The signature
then gets its own entry in the “attachments” array and must have
a “usageType” of
“http://adlnet.gov/expapi/attachments/signature” per the
specification. The signature is then included as a file using the
normal attachment procedure. Appendix G of the specification
contains an excellent example of what the signature, pre-signed
and post-signed Statements look like. Though I’ve not personally
seen examples of signed statements in the wild nor support in the
libraries, I’m hoping that support is added soon (perhaps I’ll even
get to it) and that signed statements start showing up.

Registry for usage types

Attachment usage types are just one more URI that Tin Can users
have to deal with as we’ve already seen with verbs, activity types,
and extensions. To help facilitate interoperability and to make
sure attachment usage types are resolvable, The Registry includes
handling of “attachment usages”. It contains an ever growing list
of usage types that others have already started using, naturally

Anatomy of a Tin Can API Statement

https://github.com/adlnet/xAPI-Spec/blob/master/xAPI.md
https://github.com/adlnet/xAPI-Spec/blob/master/xAPI.md
https://registry.tincanapi.com/
https://registry.tincanapi.com/

// Page 88

including the statement signature one. In the event that one does
not exist that fits your use case, you can easily request to coin a
new one that will be added to the list. Usage types like the other
shareable URIs are curated and if an existing alternative fits the
bill, it may be suggested.

Conclusion

As we saw with other properties of a Statement in “Deep Dive:
Extras/Others” the specification does an excellent job of capturing
both sides of the metadata requirements when it comes to
Attachments. It handles both the mechanical with properties like
“contentType”, “length” and “sha2” as well as the meaningful with
properties like “usageType” and “display”. Though many of the
tools are still being developed to include support for attachments,
as the adoption of Tin Can matures, more and more experiences
will include the capturing of binary data. And for a number of
reasons, not the least of which legal ones, statement signing has
already been defined to take advantage of this feature to ensure a
way to trust statements that have been recorded.

Go now, make statements!

Anatomy of a Tin Can API Statement

Ready to talk about
Tin Can? Well, we
want to talk to you!

http://tincanapi.com/talk

http://tincanapi.com/talk
http://tincanapi.com/talk
http://tincanapi.com/talk

