
 Experience API Version 0.95

1

The Experience API – Version 0.95
Last Revised: Wed Sept 12 10:33:00 UTC 2012

 Experience API Version 0.95

2

Contents
1.0 Revision History: ... 4

2.0 Role of the Experience API ... 5

2.1 ADL’s Role in the Experience API .. 5

2.2 Contributors .. 5

3.0 Definitions ... 7

Tin Can API (TCAPI) .. 7

4.0 Statement.. 9

4.1 Statement Properties: .. 9

4.1.1 ID: ... 12

4.1.2 Actor: .. 12

4.1.3 Verb: ... 13

4.1.4 Object: .. 14

4.1.5 Result: .. 19

4.1.6 Context: .. 19

4.1.7 Timestamp: ... 21

4.1.8 Stored: .. 21

4.1.9 Authority:... 21

4.1.10 Voided:.. 22

4.2 Retrieval of Statements: ... 24

5.0 Miscellaneous Types... 25

5.1 Document: .. 25

5.2 Language Map ... 25

5.3 Extensions .. 25

6.0 Runtime Communication ... 26

6.1 Encoding: ... 26

6.2 Version Header: ... 26

6.3 Concurrency: .. 26

6.4 Security: ... 27

6.4.1 Authentication Definitions:... 27

6.4.2 OAuth Authorization Scope ... 28

7.0 Data Transfer (REST) ... 30

7.1 Error Codes .. 30

7.2 Statement API: ... 30

7.3 State API: ... 32

7.4 Activity Profile API: ... 34

7.5 Agent Profile API: ... 35

7.6 Cross Origin Requests: .. 36

7.7 Validation:... 37

Appendix A: Bookmarklet .. 38

 Experience API Version 0.95

3

Appendix B: Creating an “IE Mode” Request .. 40

Appendix C: Example definitions for activities of type “cmi.interaction” ... 41

 Experience API Version 0.95

4

1.0 Revision History:

.8 (Project Tin Can API Deliverable) to .9 (March 31, 2012):

Rustici software, whom delivered Project Tin Can API, made modifications to the API prior to the April 2012 Kickoff Meeting.

It was voted in this meeting to move those changes into the current spec and revision to .9.

.90 to .95 (August 31, 2012):

“Core” verbs and activity types were removed from the specification. References to these verbs in results, context ,

interactions, and activity definitions have also been removed. It is recommended that implementers prefer community

defined verbs to creating their own verbs.

 Verbs, activity types, and extension keys are now URIs

 Restructured and added language around some of the other implementation details and scope.

 Changed from using a person-centric view of agents to a persona-centric view.

 Friend of a Friend (FOAF) agent merging requirement removed.

 Agent objects must now have exactly 1 uniquely identifying property, instead of at least one.

 Experience API Version 0.95

5

2.0 Role of the Experience API

The Experience API is a service that allows for statements of experience (typically learning experiences, but could be any

experience) to be delivered to and stored securely in a Learning Record Store. The Experience API is dependent on

Learning Activity Providers to create and track learning experiences; this specification provides a data model and associated

components on how to accomplish these tasks.

Specifically, the Experience API provides:

 Structure and definition of statement, state, learner, activity and objects, which are the means by which

experiences are conveyed by a Learning Activity Provider.

 Data Transfer methods for the storage and retrieval (but not validation) of these objects to/from a Learning Record

Store. Note that the systems storing or retrieving records need not be Learning Activity Providers. LRSs may

communicate with other LRSs, or reporting systems.

 Security methods allowing for the trusted exchange of information between the Learning Record Store and trusted

sources.

The Experience API is the first of many potential specifications that will merge to create a higher architecture of online

learning and training. Authentication services, querying services, visualization services, and personal data services are

some examples of additional components that the Experience API is designing to work alongside. While the implementation

details of these services are not specified here, the Experience API is designed with these components in mind.

2.1 ADL’s Role in the Experience API

ADL has taken a role of steward and facilitator in the development of the Experience API. The Experience API is seen as

one piece of the ADL Training and Learning Architecture, which facilitates learning anytime and anywhere. ADL views the

Experience API as an evolved version of SCORM that can support similar use cases, but can also support many of the use

cases gathered by ADL and submitted by those involved in distributed learning which SCORM could not enable.

2.2 Contributors

Thank you to the following people who contributed to the Experience API:

Name: Organization:

Al Bejcek NetDimensions

Ali Shahrazad SaLTBOX

Andrew Downes

Andy Johnson ADL

Andy Whitaker Rustici Software

Anthony Altieri American Red Cross

Anto Valan Omnivera Learning Solutions

Avron Barr Aldo Ventures, Inc.

Ben Clark Rustici Software

Bill McDonald Boeing

Brian J. Miller Rustici Software

Chad Udell Float Mobile Learning

Dan Allen Litmos

Dan Kuemmel Sentry Insurance

Dave Mozealous Articulate

 Experience API Version 0.95

6

David Ells Rustici Software

Eric Johnson Planning and Learning Technologies, Inc.

Fiona Leteney Feenix e-learning

Greg Tatka Menco Social Learning

Ingo Dahn University of Koblenz and Landau

Jason Haag ADL

Jeff Place Questionmark

Jennifer Cameron Sencia Corporate Web Solutions

Jeremy Brockman

Joe Gorup CourseAvenue

John Kleeman Questionmark

Kris Miller edCetera Training

Kris Rockwell Hybrid Learning Systems

Lang Holloman

Lou Wolford ADL

Luke Hickey dominKnow

Marcus Birtwhistle ADL

Mark Davis Exambuilder

Megan Bowe Rustici Software

Melanie VanHorn ADL

Michael Flores Here Everything's Better

Mike Palmer OnPoint Digital

Mike Rustici Rustici Software

Nik Hruska ADL

Patrick Kedziora Kedzoh

Paul Roberts Questionmark

Rich Chetwynd Litmos

Richard Fouchaux Ontario Human Rights Commission

Richard Lenz Organizational Strategies, Inc.

Rick Raymer Serco

Rob Chadwick ADL

Robert Lowe

Russell Duhon SaLTBOX

Stephen Trevorrow Problem Solutions, LLC.

Steve Baumgartner

Steve Flowers XPConcept

Thomas Ho

Tim Martin Rustici Software

Tom Creighton ADL

Walt Grata ADL

 Experience API Version 0.95

7

3.0 Definitions

Experience API (XAPI): The API defined in this document, the product of “Project Tin Can API”. A simple, lightweight way

for any permitted actor to store and retrieve extensible learning records, learner and learning experience profiles, regardless

of the platform used.

Tin Can API (TCAPI): The previous name of the API defined in this document.

Learning Activity Provider (AP): The software object that is communicating with the LRS to record information about a

learning experience. May be similar to a SCORM package as it is possible to bundle assets with the software object that

does this communication, but may also be separate from the experience it is reporting about.

Learning Activity (activity): Like a SCORM Activity, a unit of instruction, experience, or performance that is to be tracked.

Statement: A simple statement consisting of <Actor (learner)> <verb> <object>, with <result>, in <context> to track an

aspect of a learning experience. A set of several statements may be used to track complete details about a learning

experience.

Learning Record Store (LRS): A system that stores learning information. Currently, most LRSs are Learning Management

Systems (LMSs), however this document uses the term LRS to be clear that a full LMS is not necessary to implement the

XAPI. The XAPI is dependent on an LRS to function correctly.

Learning Management System (LMS): Provides the tracking functionality of an LRS, but provides additional administrative

and reporting functionality. In this document the term will be used when talking about existing systems that implement

learning standards. The XAPI can work independently of an LMS, but is built with knowledge of the suite of services an LMS

provides.

Service: A software component responsible for one or more aspects of the distributed learning process. An LMS typically

combines many services to design a complete learning experience.

Registration: If the LRS is an LMS, it likely has a concept of registration, an instance of a learner signing up for a particular

learning activity. The LMS may also close the registration at some point when it considers the learning experience complete.

For Experience API purposes, a registration may be applied more broadly; an LMS could assign a group of students to a

group of activities and track all related statements in one registration. Note: activity providers are cautioned against reporting

registration other than when assigned by an LRS. An LRS that assigns registrations is likely to reject statements containing

unassigned registration IDs.

State: Similar to SCORM suspend data, but allows storage of arbitrary key/document pairs. The LRS does not have to retain

state once the learning experience is considered “done” (LRS has closed its “registration”).

Profile: A construct where information about the learner or activity is kept, typically in name/document pairs that have

meaning to an instructional system component.

Authentication: The concept of verifying the identity of a user or system. This allows interactions between the two “trusted”

parties.

Authorization: The affordance of permissions based on a user or system’s role: the process of making one user or system

“trusted” by another.

Community of Practice: A group, usually connected by a common cause, role or purpose, which operates in a common

modality.

 Experience API Version 0.95

8

 Experience API Version 0.95

9

4.0 Statement

The statement is the core of the XAPI. All learning events are stored as statements such as: “I did this”.

4.1 Statement Properties:

Actor, verb, and object are required, all other properties are optional. Properties can occur in any order, but are limited t o

one use each. Each property is discussed below.

Property Type Default Description

id UUID UUID assigned by LRS or other trusted source.

actor Object Learner or Team object the statement is about. “I”.

verb Object Action of the Learner or Team object. “Did”.

object Object Activity, agent, or another statement that is the object of the statement, “this”. Note that

objects which are provided as a value for this field should include a “objectType” field. If not

specified, the object is assumed to be an activity.

result Object Result object, further details relevant to the specified verb.

context Object Context that gives the statement more meaning. Examples: Team actor is working with,

altitude in a flight simulator.

timestamp Date/Time Timestamp (Formatted according to ISO 8601) of when what this statement describes

happened. If not provided, LRS should set this to the value of "stored" time.

stored Date/Time Timestamp (Formatted according to ISO 8601) of when this statement was recorded. Set by

LRS.

authority Object Agent who is asserting this statement is true. Verified by LRS based on authentication, and set

by LRS if left blank.

voided Boolean false Indicates that the statement has been voided (see below)

Aside from (potential or required) assignments of properties during initial processing ("id", "authority", "stored", "timestamp"),

and the special case of updating the “voided” flag, statements are immutable. Note that the content of activities that are

referenced in statements are not considered part of the statement itself. So while the statement is immutable, the activities

referenced by that statement are not. This means a deep serialization of a statement into JSON will change if the referenced

activities change.

Example of a simple statement:

{

 "id":"fd41c918-b88b-4b20-a0a5-a4c32391aaa0",

https://en.wikipedia.org/wiki/ISO_8601#Durations
https://en.wikipedia.org/wiki/ISO_8601#Durations

 Experience API Version 0.95

10

 "actor":{

 "name":"Project Tin Can API",

 "mbox":"mailto:user@example.com"

 },

 "verb":{

 "id":"http://adlnet.gov/expapi/verbs/created",

 "display":{ "en-US":"created" }

 },

 "object":{

 "id":"http://example.adlnet.gov/xapi/example/simplestatement",

 "definition":{

 "name":{ "en-US":"simple statement" },

 "description":{ "en-US":"A simple Experience API statement. Note that the LRS

 does not need to have any prior information about the actor (learner), the

 verb, or the activity/object." }

 }

 }

}

Simplest possible statement:

{

 "actor":{

 "objectType": "Agent",

 "mbox":"mailto:xapi@adlnet.gov"

 },

 "verb":{

 "id":"http://adlnet.gov/expapi/verbs/created",

 "display":{

 "en-US":"created"

 }

 },

 "object":{

 "id":"http://example.adlnet.gov/xapi/example/activity"

 Experience API Version 0.95

11

 }

}

Typical simple completion with verb “attempted”:

{

 "actor":{

 "objectType": "Agent",

 "name":"Example Learner",

 "mbox":"mailto:example.learner@adlnet.gov"

 },

 "verb":{

 "id":"http://adlnet.gov/expapi/verbs/attempted",

 "display":{

 "en-US":"attempted"

 }

 },

 "object":{

 "id":"http://example.adlnet.gov/xapi/example/simpleCBT",

 "definition":{

 "name":{

 "en-US":"simple CBT course"},

 "description":{

 "en-US":"A fictitious example CBT course."

 }

 }

 },

 "result":{

 "score":{

 "scaled":0.95

 },

 "success":true,

 "completion":true

 Experience API Version 0.95

12

 }

}

4.1.1 ID:

The statement ID is a UUID which MAY be generated by the Learning Activity Provider. If a statement is posted without an

ID, the LRS MUST assign one.

4.1.2 Actor:

The actor field contains an Agent object, loosely modeled on ideas from Friend Of A Friend

(FOAF, http://xmlns.com/foaf/spec/#term_Agent), a widely accepted vocabulary for describing identifiable individuals and

groups.

What makes Agents identifiable is the use of identifying properties, such as email address, OpenID, or twitter account,

where any two agents sharing an identifying property can be safely assumed to be the same agent. Properties with this

characteristic are called "Inverse Functional Properties". In addition to the standard inverse functional properties from FOAF

of mbox, mbox_sha1sum, and openid, account is an inverse functional property in XAPI Agents.

For reasons of privacy and practicality, XAPI Agents MUST have exactly one inverse functional property. If an Activity

Provider is concerned about revealing the email of a person, it SHOULD instead use an account with an opaque account

name to identify the person. Inverse functional properties are noted with an asterisk.

Agent

Property Description

objectType “Agent” (Required)

name String (Optional)

mbox* String in the form "mailto:email address". (Note: Only emails that have only ever been and will ever be

assigned to this Agent, but no others, should be used for this property and mbox_sha1sum).

mbox_sha1sum* String containing the SHA1 hash of a mailto URI (such as goes in an mbox property). An LRS MAY include

Agents with a matching hash when a request is based on an mbox.

openid* The URI of an openid that uniquely identifies this agent.

account* An account object, see below.

Account

Property Description

http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_mbox
http://xmlns.com/foaf/spec/#term_mbox
mailto:email
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://xmlns.com/foaf/spec/#term_mbox_sha1sum

 Experience API Version 0.95

13

homePage The URI to the canonical home page for the system the account is on. This is based on FOAF's

accountServiceHomePage.

name The unique ID or name used to log in to this account. This is based on FOAF's

accountName.

An example using an opaque account:

{

 "objectType": "Agent",

 "account": {

 "homePage": "http://www.example.com",

 "name": "1625378"

 }

}

Agents are also important in relation to OAuth. See the section on OAuth for details.

Group (Subclass of Agent)

Property Description

objectType "Group" (required)

member (array of) Agent objects representing members of this group. The agents in this array MUST NOT be groups

If a group is the authority of a statement, that group MUST have no inverse functional properties set, and MUST have

exactly 2 members which identify an OAuth consumer and a user. Otherwise, a group MAY be used anywhere an agent

could be, but MUST be a valid agent. For non-asserter groups, the member array MAY be used to list agents that are

members of the group, but SHOULD NOT be used to identify a group.

4.1.3 Verb:

A verb defines what the action is between actors, activities, or most commonly, between an actor and activity. The

Experience API does not specify any particular verbs, but rather defines how verbs are to be created. It is expected that

verb lists exist for various communities of practice. Verbs appear in statements as objects consisting of a URI and a set of

display names.

The Verb URI should identify the particular semantics of a word, not the word itself. For example, the English word "fired"

could mean different things depending on context, such as "fired a weapon", "fired a kiln", or "fired an employee". In this

case, a URI should identify one of these specific meanings, not the word "fired".

The Experience API does not specify any particular verbs (except the reserved ““http://adlnet.gov/expapi/verbs/voided”), but

rather defines how verbs are to be used. Communities of practice will develop verbs they find useful and make them

available to the general community for use.

http://adlnet.gov/expapi/verbs/voided

 Experience API Version 0.95

14

A verb in the Experience API is a URI, and denotes a specific meaning not tied to any particular language. For example, a

particular verb URI such as http://example.org/firearms#fire or tag:example.com,2012:xQr73H might denote the action of

firing a gun, or the verb URI http://example.com/عل دن/ف .might denote the action of reading a book خوان

The person who comes up with a new verb should own the URI, or have permission from the owner to use the URI to

denote a Experience API verb. The owner of a URI SHOULD make a human-readable description of the intended usage of

the verb accessible at the URI.

* NOTE: In some future version, this specification might specify additional machine-readable information about the verb be

made available, but the choice to do so is postponed to monitor emerging practices and pain points. ADL plans to release a

set of recommended verbs at the same time as this specification. Learning Activity Providers MAY use one these verbs, or

other verb which have wide adoption, if applicable. The verb list to be created by ADL will include verbs corresponding to the

verbs previously defined in this specification. If the meaning of one of those verbs is intended, Learning Activity Providers

SHOULD use the corresponding ADL verb. Learning Activity Providers MAY create their own verbs instead, as needed.

4.1.3.1 Verb Object:

The verb object is the representation of a verb that is actually included in a statement. In addition to referencing the verb

itself via a URI, it includes a display property which provides the human-readable meaning of the verb in one or more

languages.

The display property MUST NOT be used to alter the meaning of a statement, rather it MUST be used to illustrate the

meaning which is already determined by the verb URI.

A system reading a statement MUST NOT use the display property to infer any meaning from the statement, rather it MUST

use the verb URI to infer meaning, and the display property only for display to a human.

Property Description Example

id A URI that corresponds to a verb definition. Each verb

definition corresponds to the meaning of a verb, not the

word. A URI should be human-readable and contain the

verb meaning.

www.adlnet.gov/XAPIprofile/ran(travelled_a_distance)

display A language map containing the human readable

representation of the verb in at least one language. This

does not have any impact on the meaning of the statement,

but only serves to give a human-readable display of the

meaning already determined by the chosen verb.

display : { "en-US" : "ran"}

display : { "en-US" : "ran", "es" : "corrió" }

4.1.4 Object:

The object of a statement is the Activity, Agent, or Statement that is the object of the statement, “this”. Note that objects

which are provided as a value for this field should include an “objectType” field. If not specified, the object is assumed to be

an Activity.

4.1.4.1 – Activity as “object”

http://example.org/firearm/fire
http://example.com/%D9%81%D8%B9%D9%84/%D8%AE%D9%88%D8%A7%D9%86%D8%AF%D9%86

 Experience API Version 0.95

15

A statement may represent a Learning Activity as an object in the statement.

Property Description

objectType Should always be “Activity” when present. Used in cases where type cannot otherwise be determined, such as

the value of a statement’s “object” field.

id URI. If a URL, the URL should refer to metadata for this activity.

definition Metadata, See below

Activity URI

An activity URI must always refer to a single unique activity. There may be corrections to that activity's def inition. Spelling

fixes would be appropriate, for example, but changing correct responses would not.

The activity URI is unique, and any reference to it always refers to the same activity. Activity Providers must ensure this is

true and the LRS may not attempt to treat multiple references to the same URI as references to different activities,

regardless of any information which indicates two authors or organizations may have used the same activity URI.

When defining an activity URI, care must be taken to make sure it will not be re-used. It should use a domain the creator

controls or has been authorized to use for this purpose, according to a scheme the domain owner has adopted to make sure

activity URIs within that domain remain unique.

Any state or statements stored against an activity URI must be compatible and consistent with any other state or statements

that are stored against the same activity URI, even if those statements were stored in the context of a new revision or

platform.

NOTE: The prohibition against an LRS treating references to the same activity URI as two different activities, even if the

LRS can positively determine that was the intent, is crucial to prevent activity id creators from creating ids that could be

easily duplicated, as intent would be indeterminable should a conflict with another system arise.

Activity Definition

Property Description

name Language Map, The human readable/visual name of the activity

description Language Map, A description of the activity

type URI, the type of activity. Note, URI fragments (sometimes called relative URLs) are not valid

URIs. Similar to verbs, we recommend that Learning Activity Providers look for and use

established, widely adopted, activity types.

interactionType |

correctResponsesPattern |

choices | scale | source |

target | steps

See "Interaction Activities"

 Experience API Version 0.95

16

extensions A map of other properties as needed (see: Extensions)

An LRS should update its internal representation of an activity’s definition upon receiving a statement with a different

definition of the activity from the one stored, but only if it considers the Learning Activity Provider to have the authority to do

so.

Activities may be defined in XML according to the schema http://www.adlnet.gov/xapi. LRS's MAY attempt to look up an

XML document at the URL given by the activity URI, and check if it conforms to the Experience API schema. If it does, the

LRS SHOULD fill in its internal representation of the activities definition based on that document. Note that activity URI's are

not required to resolve to such metadata.

Note that multiple activities may be defined in the same metadata document. The LRS MAY choose whether to store

information about activities other than those it has received statements for or not.

As part of each group of activities, the activity metadata document may define information about an associated activity

provider, which the LRS SHOULD consider the authoritative source for statements about the activity.

Interaction Activities

Traditional e-learning has included structures for interactions or assessments. As a way to allow these practices and

structures to extend Experience API's utility, this specification include built in definitions for interactions which borrows from

the CMI data model. These definitions are intended to provide a simple and familiar utility for recording interaction data.

These definitions are simple to use, and consequently limited. It is expected that communities of practice requiring richer

interactions definitions will do so through the use of extensions to an activity's type and definition.

When defining interaction activities, the activity type: “http://www.adlnet.gov/experienceapi/activity-

types/cmi.interaction SHOULD be used, and a valid interactionType MUST be specified. If interactionType is specified, an

LRS processing MAY validate the remaining properties as specified in the table below, and return HTTP 400 "Bad Request"

if the remaining properties are not valid for the interaction type.

Property Description

interactionType As in “cmi.interactions.n.type” as defined in the SCORM 2004 4th edition Runtime

Environment.

correctResponsesPattern An array of strings, corresponding to “cmi.interactions.n.correct_responses.n.pattern” as

defined in the SCORM 2004 4th edition Runtime Environment, where the final n is the index of

the array.

choices | scale | source |

target | steps

Array of interaction components specific to the given interaction type (see below).

http://www.adlnet.gov/xapi
http://www.adlnet.gov/experienceapi/activity-types/cmi.interaction
http://www.adlnet.gov/experienceapi/activity-types/cmi.interaction

 Experience API Version 0.95

17

Interaction Components

Interaction components are defined as follows:

Property Description

id As in “cmi.interactions.n.id” as defined in the SCORM 2004 4th edition Runtime Environment

description Language Map (see below), a description of the interaction component (for example, the text for a given choice

in a multiple-choice interaction)

The following table shows the supported lists of CMI interaction components for an interaction activity with the given

interactionType.

interactionType supported component list(s)

choice, sequencing choices

likert scale

matching source, target

performance steps

true-false, fill-in, numeric, other [No component lists defined]

*See Appendix C for examples of activity definitions for each of the cmi.interaction types.

4.1.4.2 - Agent as "object"

A statement may specify an Agent as an object in the statement. See section 4.1.2 for details regarding Agents.

4.1.4.3 - Statement as "object"

Another statement may be used as an object in the statement, though some restrictions apply depending on whether the

included statement is new, or is simply a reference to an existing statement.

Sub-Statements

When a new statement is included as part of another statement, it is considered a sub-statement, and is subject to certain

restrictions. Sub-statements may only be included as parts of other statements, MUST specify an "objectType" property with

the value "SubStatement", and MUST NOT have the "id", "stored", or "authority" properties. They will be considered part of

 Experience API Version 0.95

18

the parent statement, and MUST NOT contain a sub-statement. Implementations MUST validate the sub-statement as they

would other statements, with the addition of these rules.

One interesting use of sub-statements is in creating statements of intention. For example, using sub-statements we can

create statements of the form "<I> <planned> (<I> <did> <this>)" to indicate that we've planned to take some action. The

concrete example that follows logically states that "I planned to read 'Some Awesome Book'".

{

 "actor": {"objectType": "Agent", "mbox":"mailto:test@example.com" },

 "verb" : { "id":"http://example.com/planned", "display":{"en-US":"planned"} },

 "object": {

 "objectType": "SubStatement",

 "actor" : {"mbox":"mailto:test@example.com" },

 "verb" : { "id":"http://example.com/read", "display":{"en-US":"read"} },

 "object": {

 "id":"http://example.com/book",

 "definition": { "name" : {"en-US":"Some Awesome Book"}}

 }

 }

}

Statement References

When an existing statement is included as part of another statement, a statement reference should be used. A statement

reference is a simple object consisting an "objectType" property, which MUST be "StatementRef", and an "id" property,

which MUST be set to the UUID of a statement which is present on the system.

Statement references are typically used in scenarios such as commenting or grading, and in the special case of voiding (see

section 4.1.10 for details on voiding statements). Assuming that some statement has already been stored with the ID

8f87ccde-bb56-4c2e-ab83-44982ef22df0, the following example shows how a comment could be issued on the original

statement, using a new statement:

{

 "actor" : { "objectType": "Agent", "mbox":"mailto:test@example.com" },

 "verb" : { "id":"http://example.com/commented", "display": {"en-US":"commented"} },

 "object" : {

 "objectType":"StatementRef",

 "id":"8f87ccde-bb56-4c2e-ab83-44982ef22df0"

 Experience API Version 0.95

19

 },

 "result" : { "response" : "Wow, nice work!" }

}

4.1.5 Result:

The result field represents a measured outcome related to the statement, such as completion, success, or score. It is also

extendible to allow for arbitrary measurements to be included.

Property Description

score Score object (or not specified) - see section 4.1.5.1

success true, false, or not specified

completion true, false, or not specified

response A string response appropriately formatted for the given activity.

duration Period of time over which the statement occurred. Formatted according to ISO 8601, with a precision of 0.01

seconds.

extensions A map of other properties as needed (see extensions)

4.1.5.1 Score

Property Description

scaled cmi.score.scaled (recommended)

raw cmi.score.raw

min cmi.score.min

max cmi.score.max

4.1.6 Context:

The “context” field provides a place to add some contextual information to a statement. We can add information such as the

instructor for an experience, if this experience happened as part of a team activity, or how an experience fits into some

https://en.wikipedia.org/wiki/ISO_8601#Durations

 Experience API Version 0.95

20

broader activity.

Property Description

registration UUID of the registration statement is associated with.

instructor Instructor that the statement relates to, if not included as the actor or object of the statement.

team Team that this statement relates to, if not included as the actor or object of the statement.

contextActivities A map of the types of context to learning activities “activity” this statement is related to.

Valid context types are: “parent”, “grouping”, and “other”.

For example, if I am studying a textbook, for a test, the textbook is the activity the statement is about, but

the test is a context activity, and the context type is “other”.

{

"other" : {"id" : "http://example.adlnet.gov/xapi/example/test" }

}

This activity could also be a session, like a section of a specific course, or a particular run through of a

scenario. So the statement could be about “Algebra I”, but in the context of “Section 1 of Algebra I”.

There could be an activity hierarchy to keep track of, for example “question 1” on “test 1” for the course

“Algebra 1”. When recording results for “question 1”, it we can declare that the question is part of “test 1”,

but also that it should be grouped with other statements about “Algebra 1”. This can be done using parent

and grouping:

{

"parent" : {"id" : "http://example.adlnet.gov/xapi/example/test 1" },

"grouping" : {"id" : "http://example.adlnet.gov/xapi/example/Algebra1" }

}

This is particularly useful with the object of the statement is an agent, not an activity. “I mentored Ben with

context Algebra I”.

http://example.scorm.com/tincan/example/test
http://example.scorm.com/tincan/example/test
http://example.scorm.com/tincan/example/Algebra1

 Experience API Version 0.95

21

revision Revision of the learning activity associated with this statement.

Revisions are to track fixes of minor issues (like a spelling error), if there is any substantive change to the

learning objectives, pedagogy, or assets associated with an activity, a new activity ID should be used.

Revision format is up to the owner of the associated activity.

Not applicable if statement's object is a Person.

platform Platform used in the experience of this learning activity. Not applicable if statement's object is a Person.

Defined vocabulary, TBD.

language Code representing the language in which the experience being recorded in this statement (mainly) occurred

in, if applicable and known. Do not specify any value if not applicable or not known.

Format for this value is as defined in RFC 5646

For example, US English would be recorded as: en-US

statement Another statement (either existing or new), which should be considered as context for this statement. See

section 4.1.4.3 for details about including statements within other statements.

extensions A map of any other domain-specific context relevant to this statement. For example, in a flight simulator

altitude, airspeed, wind, attitude, GPS coordinates might all be relevant (see extensions)

4.1.7 Timestamp:

The time at which the statement took place, formatted according to ISO 8601. Note that this can differ from the system time

of the event, such as in the case of formal or informal learning that occurs outside of the system.

4.1.8 Stored:

The LRS stored version of timestamp, formatted according to ISO 8601. It is recognized that the content time stamping of a

statement (via the "timestamp" field) may differ from the LRS storage time, due to delays in reporting or as a statement is

propagated to other systems.

4.1.9 Authority:

The authority property provides information about who or what has asserted that this statement is true. Consequently, the

asserting authority may be an Agent (representing the authenticating user or some system or application), or in the case of

3-legged OAuth workflows, a Group of two Agents representing an application and user together.

If a statement is stored using a validated OAuth connection, and the LRS creates or modifies the authority property of the

statement, the authority MUST contain an agent object that represents the OAuth consumer, either by itself, or as part of a

http://tools.ietf.org/html/rfc5646
https://en.wikipedia.org/wiki/ISO_8601#Durations
https://en.wikipedia.org/wiki/ISO_8601#Durations
https://en.wikipedia.org/wiki/ISO_8601#Durations
https://en.wikipedia.org/wiki/ISO_8601#Durations

 Experience API Version 0.95

22

group in the case of 3-legged OAuth. This agent MUST be identified by account, and MUST use the consumer key as the

account name field. If the OAuth consumer is a registered application,then the token request endpoint MUST be used as the

account homePage, otherwise the temporary credentials endpoint must be used as the account homePage.

Except as specified in the paragraph above, agent objects MUST NOT use any OAuth endpoint as an account homePage.

The behavior of an LRS SHOULD NOT rely on Agents with an account using the temporary credentials endpoint as the

homePage and with matching account names coming from the same source, as there is no way to verify that, since multiple

unregistered applications could choose the same consumer key. Each unregistered consumer SHOULD pick a unique

consumer key.

If a statement is received from another, fully trusted LRS, an LRS MAY choose not to overwrite the authority property

received. Otherwise, an LRS MUST completely ignore any provided authority property, and instead construct its own

authority property as described here. If a user connects directly (using HTTP Basic Auth) or is included as part of a 3-legged

OAuth workflow, the LRS MUST include the user as an Agent in the authority, and MAY identify the user with any of the

legal identifying properties.

OAuth Authorities

In a 3-legged OAuth workflow, authentication involves both an OAuth consumer and a user of the OAuth service provider.

For instance, requests made by an authorized Twitter plugin on your Facebook account will include credentials that are

specific not only to Twitter as a client application, or you as a user, but the unique combination of both.

To support this concept, an LRS preparing the authority of a statement received via 3-legged OAuth MUST use a pairing of

an application and a user. A Group object should be used, with a member property containing the application first, and the

user second. Below is a concrete example which represents a pairing of an OAuth consumer and a user.

"authority": {

"objectType" : "group",

 "member": [

 {

 "account": {

 "homePage":"http://example.com/XAPI/OAuth/Token",

 "name":"oauth_consumer_x75db"

 }

 },

 { "mbox":"mailto:bob@example.com" }

]

}

4.1.10 Voided:

A key factor in enabling the distributed nature of Experience API is through the immutability of statements. Because

statements cannot be logically changed or deleted, systems can be assured to have an accurate collection of data based

solely off of the stream of statements that are introduced into the LRS.

 Experience API Version 0.95

23

But, it is clear that statements may not always be valid for all of time once they are made. Mistakes or other factors could

require that some previous statement is marked as invalid. For this case, the reserved

““http://adlnet.gov/expapi/verbs/voided” verb can be used, using a statement reference to the invalid statement as the object.

See "Statement References" in section 4.1.4.3 for details.

An LRS which has received a statement that voids another statement should mark the target statement as voided using the

“voided” field. If the target statement which is referenced cannot be found, the LRS should report an appropriate error

indicating as such.

When issuing a voiding statement, the object is required to have its “objectType” field set to “Statement”, and must specify

the target statement’s ID using the “id” field. An example of a voiding statement follows:

{

 "actor" : {

 "objectType": "Agent",

"name" : "Example Admin",

 "mbox" : "mailto:admin@example.adlnet.gov"

 },

 "verb" : {

 "id":"http://adlnet.gov/xapi/verbs#voided",

 "display":{"en-US":"voided"}

 },

 "object" : {

 "objectType":"StatementRef",

 "id" : "e05aa883-acaf-40ad-bf54-02c8ce485fb0"

 }

}

The above statement voids a previous statement which is identified with the statement ID “e05aa883-acaf-40ad-bf54-

02c8ce485fb0”. The previous statement will now be marked by setting its “voided” flag to true. Any changes to activity or

agent definitions which were introduced by the voided statement may be rolled back by the LRS, but this not required.

Any statement that voids another cannot itself be voided. An activity provider that would like to “unvoid” a voided statement

should reissue the statement under a new ID. Though voided and voiding statements must be reported as usual through the

Experience API, it is recommended that reporting systems do not show voided or voiding statements by default.

4.1.11 Metadata:

The Experience API is extensible to allow any form of metadata, but recommends that existing fields are used to convey

information. While metadata is extremely useful for the classification, storage, search, discovery, and retrieval of objects, it is

out of the scope of the Experience API. It is recommended that content brokering services enforce metadata on created and

distributed content and that querying services create metadata from Experience API statements and other available data.

http://adlnet.gov/expapi/verbs/voided

 Experience API Version 0.95

24

4.2 Retrieval of Statements:

A collection of statements can be retrieved by performing a query on the “statements” endpoint, see section 7.2 "Statement

API" for details.

Property Type Description

statements Array of

Statements

List of statements. If the list returned has been limited (due to pagination), and there are more

results, they will be located at the “statements” property within the container located at the URL

provided by the "more" element of this statement result object.

more URL Relative URL that may be used to fetch more results, including the full path and optionally a query

string but excluding scheme, host, and port. Empty string if there are no more results to fetch.

This URL must be usable for at least 24 hours after it is returned by the LRS. In order to avoid the

need to store these URLs and associated query data, an LRS may include all necessary

information within the URL to continue the query, but should avoid generating extremely long

URLs. The consumer should not attempt to interpret any meaning from the URL returned.

 Experience API Version 0.95

25

5.0 Miscellaneous Types

5.1 Document:

The Experience API provides a facility for Activity Providers to save arbitrary data in the form of documents, which may be

related to an Activity, Agent, or combination of both.

Property Description

id String, set by AP, unique within state scope (learner, activity)

updated Timestamp

contents Free form.

Note that in the REST binding, State is a document not an object. ID is stored in the URL, updated is HTTP header

information, and contents is the HTTP document itself.

5.2 Language Map

A language map is a dictionary where the key is a RFC 5646 Language Tag, and the value is a string in the language

specified in the tag. This map should be populated as fully as possible based on the knowledge of the string in question in

different languages.

5.3 Extensions

Extensions are defined by a map. The keys of that map MUST be URIs, and the values MAY be any JSON value or data

structure. The meaning and structure of extension values under a URI key are defined by the person who coined the URI,

who SHOULD be the owner of the URI, or have permission from the owner. The owner of the URI SHOULD make a human-

readable description of the intended meaning of the extension supported by the URI accessible at the URI. A learning record

store MUST NOT reject a Experience API statement based on the values of the extensions map.

Extensions are available as part of activity definitions, as part of statement context, or as part of some statement result. In

each case, they’re intended to provide a natural way to extend those elements for some specialized use. The contents of

these extensions might be something valuable to just one application, or it might be a convention used by an entire

community of practice.

Extensions should logically relate to the part of the statement where they are present. Extensions in statement context

should provide context to the core experience, while those in the result should provide elements related to some outcome.

For activities, they should provide additional information that helps define an activity within some custom application or

community.

*Note: A statement should not be totally defined by its extensions, and be meaningless otherwise. Experience API

statements should be capturing experiences among actors and objects, and should always strive to map as much

information as possible into the built in elements, in order to leverage interoperability among Experience API conformant

tools.

http://tools.ietf.org/html/rfc5646

 Experience API Version 0.95

26

6.0 Runtime Communication

6.1 Encoding:

All strings must be encoded and interpreted as UTF-8.

6.2 Version Header:

Requests to an LRS MUST include an HTTP header with name "X-Experience-API-Version" to indicate what version of the

specification was used to construct the request. For systems written against this version of the specification, the value

should always be "0.95". If an LRS cannot fulfill the request due to version incompatibilities, it MUST reject the request with

a response of 400 and an error message explaining the problem. Conversely, every response from an LRS MUST include

the HTTP header “X-Experience-API-Version” to indicate the version of the specification that was used to process the

request.

The versions of the request and response will typically agree, but the version returned from the LRS may be higher in the

case of compatible versions (i.e. the client has sent a 0.95 request which can be processed correctly under the 1.0

specification). The LRS MUST NOT attempt to process a request under the rules of a version less than that specified in the

request (i.e. an LRS will not attempt to process a 1.0 request using the 0.95 specification). In such cases, the LRS will return

a 400 error and an explanation of the problem.

Clients should use the lowest version of the specification which is compatible with the latest released version, and provides

all the features the client needs. This will enable those clients to work with LRSs that only support the compatible earlier

version specified by the client, as well as those that support the latest version.

An LRS supporting the latest version MUST use that version to process requests from older compatible versions, rather than

having a parallel implementation for those versions. However, in the case of incompatible versions, the LRS MAY have a

concurrent implementation to process legacy requests. While it is imperative that this specification strives for backwards

compatibility, this behavior would allow clients to transition smoothly over time if breaking changes became unavoidable.

6.3 Concurrency:

In order to prevent “lost edits” due to API consumers PUT-ing changes based on old data, XAPI will use HTTP 1.1 entity

tags (ETags) to implement optimistic concurrency control in the portions of the API where PUT may overwrite existing data.

(State API, Actor and Activity profile APIs). The requirements in the rest of this “Concurrency” section only apply to those

APIs.

When responding to a GET request, the LRS will add an ETag HTTP header to the response. The value of this header must

be a hexidecimal string of the SHA - 1 digest of the contents, and must be enclosed in quotes.

The reason for specifying the LRS ETag format is to allow API consumers that can’t read the ETag header to calculate it

themselves.

When responding to a PUT request, the LRS must handle the If - Match header or If - None - Match header as described in

RFC2616, HTTP 1.1, if the If-Match header contains an ETag, or the If-None-Match header contains “*”. In the first case,

this is to detect modifications made after the consumer last fetched the document, and in the second case, this is to detec t

when there is a resource present that the consumer is not aware of.

In either of the above cases, if the header precondition specified fails, the LRS must return HTTP status 412 “Precondition

Failed”, and make no modification to the resource.

XAPI consumers should use these headers to avoid concurrency problems. The State API will permit PUT statements

http://www.ietf.org/rfc/rfc3174.txt
http://www.ietf.org/rfc/rfc3174.txt
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26

 Experience API Version 0.95

27

without concurrency headers, since state conflicts are unlikely. For other APIs that use PUT (Actor and Activity Profile), the

headers are required. If a PUT request is received without either header for a resource that already exists, the LRS must

return HTTP status 409 “Conflict”, and return a plain text body explaining that the consumer must check the current state of

the resource and set the “If-Match” header with the current ETag to resolve the conflict. In this case, the LRS must make no

modification to the resource.

6.4 Security:

The LRS will support authentication using at least one of the following methods:

 OAuth 1.0 (rfc5849), with signature methods of "HMAC-SHA1", "RSA-SHA1", and "PLAINTEXT"

 HTTP Basic Authentication

 Common Access Cards (implementation details to follow in a later version)

There are a number of expected authentication scenarios to consider for the XAPI. In all cases, the LRS is responsible for
making, or delegating, decisions on the validity of statements, and determining what operations may be performed based on
the credentials used. It must be possible to configure any LRS to completely support the XAPI using any of the above
authentication methods, and any of the workflows describe below. However, LRS may only support favored authentication
mechanisms, or limit the known users or registered applications that may authenticate at all or using a specific
authentication type. This is to allow administrators to strike the desired balance between interoperability and security.

In particular, the "PLAINTEXT" signature method of OAuth and HTTP Basic Authentication are likely to be turned off by
security focused LRS administrators. Therefore LRS administrators are urged to minimally leave OAuth enabled, with at
least the signature methods of "HMAC-SHA1" and "RSA-SHA1", and XAPI consumers are urged to use OAuth with one of
those signature methods to maximize interoperability.

6.4.1 Authentication Definitions:

A registered application is an application that will authenticate to the LRS as an OAuth consumer that has been registered

with the LRS. As part of that registration the application's name and a unique consumer key (identifier) shall be recorded by

the LRS. Either the application has been assigned a consumer secret, or it has recorded its public key. The LRS must

provide a mechanism to complete this registration, or delegate to another system that provides such a mechanism. The

means by which this registration is accomplished are not defined by OAuth or the XAPI.

A known user is a user account on the LRS, or on a system which the LRS trusts to define users.

The following authentication workflows are anticipated.

1) Registered Application + Known User

This is the standard workflow for OAuth. Use the endpoints described further below to complete the standard OAuth

workflow.

If this form of authentication is used to record statements and no authority is specified, the LRS should record the authority

as a group consisting of an Agent representing the registered application, and a Person representing the known user.

2) Registered Application + Unknown User

An LRS may choose to trust certain applications to access the XAPI without additional user credentials, that is without

invoking the authorize or token steps of the OAuth workflow. In that case, the LRS will consider requests valid that are

signed using OAuth with thatapplication’s credentials and with an empty token and token secret. In this case, the application

must have been registered with the LRS.

http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/rfc5849

 Experience API Version 0.95

28

If this form of authentication is used to record statements and no authority is specified, the LRS should record the authority

as the Agent representing the registered application.

3) Unregistered Application + Known User

The following must be applied to the standard OAuth workflow:

Since the application is not registered, its representing Agent will not be identified in the same way as a registered Agent,

and the LRS must be careful about making assumptions regarding identity. See the section on Authority. A blank consumer

secret should be used. The "Temporary Credential" request should then be called. Along with the usual parameters,

"consumer_name" should be specified. During the user authentication phase, this name will be displayed to the user, along

with a warning that the identity of the application requesting authentication cannot be verified.

Since OAuth is specifying an application, even though it is unverified, the LRS MUST record an authority that includes both

that application and the authenticating user, as a group.

4) Known User, no application

This workflow uses HTTPBasicAuthentication. A username/password combination corresponding to an LRS login should be

used, and the LRS should record the authority as an Agent identified by the login used, unless another authority is specified

and the LRS trusts the known user to specify that authority.

5) No Authentication

Some LRSs may wish to support API access with no authentication, possibly for testing purposes, although there is no

requirement to do so. To distinguish an explicitly unauthenticated request from a request that should be given a HTTP Basic

Authentication challenge, unauthenticated requests should include headers for HTTP Basic Authentication based on a blank

username and password.

6.4.2 OAuth Authorization Scope

The LRS will accept a scope parameter asdefinedinOAuth 2.0. If no scope is specified, a requested scope of

“statements/write” and “statements/read/mine” will be assumed. The list of scopes determines the set of permissions that is

being requested. An API client should request only the minimal needed scopes, to increase the chances that the request will

be granted.

LRSs are not required to support any of these scopes except “all”. These are recommendations for scopes which should

enable an LRS and an application communicating using the XAPI to negotiate a level of access which accomplishes what

the application needs while minimizing the potential for misuse. The limitations of each scope are in addition to any security

limitations placed on the user account associated with the request.

For example, an instructor might grant “statements/read” to a reporting tool, but the LRS would still limit that tool to

statements that the instructor could read if querying the LRS with their credentials directly (such as statements relating to

their students).

XAPI scope values:

Scope Permission

statements/write write any statement

statements/read/mine read statements written by “me”, that is with an authority matching what the LRS would assign if

writing a statement with the current token.

http://www.w3.org/Protocols/HTTP/1.0/spec.html#BasicAA
http://www.w3.org/Protocols/HTTP/1.0/spec.html#BasicAA
http://www.w3.org/Protocols/HTTP/1.0/spec.html#BasicAA
https://tools.ietf.org/html/draft-ietf-oauth-v2-22#section-3.3
https://tools.ietf.org/html/draft-ietf-oauth-v2-22#section-3.3
https://tools.ietf.org/html/draft-ietf-oauth-v2-22#section-3.3
https://tools.ietf.org/html/draft-ietf-oauth-v2-22#section-3.3
https://tools.ietf.org/html/draft-ietf-oauth-v2-22#section-3.3

 Experience API Version 0.95

29

statements/read read any statement

state read/write state data, limited to activities and actors associated with the current token to the extent it is

possible to determine this relationship.

define (re)Define activities and actors. If storing a statement when this is not granted, IDs will be saved and

the LRS may save the original statement for audit purposes, but should not update its internal

representation of any actors or activities.

profile read/write profile data, limited to activities and actors associated with the current token to the extent it

is possible to determine this relationship.

all/read unrestricted read access

all unrestricted access

OAuth Extended Parameters

Note that the parameters “consumer_name” and “scope” are not part of OAuth 1.0, and therefore if used should be passed

as query string or form parameters, not in the OAuth header.

OAuth Endpoints

Temporary Credential Request:

http://example.com/XAPI/OAuth/initiate

Resource Owner Authorization:

http://example.com/XAPI/OAuth/authorize

Token Request:

http://example.com/XAPI/OAuth/token

http://example.com/XAPI/OAuth/initiate
http://example.com/XAPI/OAuth/authorize
http://example.com/XAPI/OAuth/token

 Experience API Version 0.95

30

7.0 Data Transfer (REST)

This section describes The XAPI consists of 4 sub-APIs: statement, state, learner, and activity profile. The four sub-APIs of

the Experience API are handled via RESTful HTTP methods. The statement API can be used by itself to track learning

records.

7.1 Error Codes

The list below offers some general guidance on HTTP error codes that may be returned from various methods in the API. An

LRS MUST return an error code appropriate to the error condition, and SHOULD return a message in the response

explaining the cause of the error.

 400 Bad Request - MAY be returned by any method of the API, and indicates an error condition caused by an invalid or

missing argument. The term "invalid arguments" includes malformed JSON or invalid object structures.

 401 Unauthorized - Indicates that authentication is required, or in the case authentication has been posted in the request,

that the given credentials have been refused.

 403 Forbidden - Indicates that the request is unauthorized for the given credentials. Note this is different than refusing the

credentials given. In this case, the credentials have been validated, but the authenticated client is not allowed to perform the

given action.

 404 Not Found - Indicates the requested resource was not found. May be returned by any method that returns a uniquely

identified resource, for instance, any state or profile API call targeting a specific document, or the method to retrieve a s ingle

statement.

 409 Conflict - Indicates an error condition due to a conflict with the current state of a resource, in the case of state and

profile API calls, or in the statement PUT call. See section 6.3 for more details.

 412 Precondition Failed - Indicates an error condition due to a failure of a precondition posted with the request, in the case

of state and profile API calls. See section 6.3 for more details.

 500 Internal Server Error - General error condition, typically indicating an unexpected exception in processing on the server.

7.2 Statement API:

The basic communication mechanism of the Experience API.

PUT http://example.com/XAPI/statements

Stores statement with the given ID. This MUST NOT modify an existing statement. If the statement ID already exists, the

receiving system SHOULD verify the received statement matches the existing one and return 409 Conflict if they do not

match.

An LRS MUST NOT make any modifications to its state based on a receiving a statement with a statementID that it already

has a statement for. Whether it responds with "409 Conflict", or "204 No Content", it MUST NOT modify the statement or any

other object.

Returns: 204 No Content

Parameter Type Default Description

statementId String ID of statement to record

http://example.com/TCAPI/statements

 Experience API Version 0.95

31

POST http://example.com/XAPI/statements

Stores a statement, or a set of statements. Since the PUT method targets a specific statement ID, POST must be used

rather than PUT to save multiple statements, or to save one statement without first generating a statement ID. An alternative

for systems that generate a large amount of statements is to provide the LRS side of the API on the AP, and have the LRS

query that API for the list of updated (or new) statements periodically. This will likely only be a realistic option for systems

that provide a lot of data to the LRS.

Returns: 200 OK, statement ID(s) (UUID).

GET http://example.com/XAPI/statements

This method may be called to fetch a single statement, if the statementId parameter is specified, or a list of statements

otherwise, filtered by the given query parameters.

Returns: 200 OK, statement

Parameter Type Default Description

statementId String ID of statement to fetch

If statementId not specified, returns: A StatementList object, a list of statements in reverse chronological order based on

“stored” time, subject to permissions and maximum list length. If additional results are available, a URL to retrieve them wi ll

be included in the StatementList object

Returns: 200 OK, Statement Result (See section 4.2 for details)

Parameter Type Default Description

verb String Filter, only return statements matching the specified verb.

object Activity, Agent, or

Statement Object

(JSON)

 Filter, only return statements matching the specified object (activity or actor).

Object is an activity: return statements with an object that is an activity with a

matching activity ID to the specified activity.

Object is an actor: same behavior as “actor” filter, except match against object

property of statements.

registration UUID Filter, only return statements matching the specified registration ID. Note that

although frequently a unique registration ID will be used for one actor assigned to

one activity, this should not be assumed. If only statements for a certain actor or

activity should be returned, those parameters should also be specified.

http://example.com/TCAPI/statements
http://example.com/TCAPI/statements

 Experience API Version 0.95

32

context Boolean True When filtering on activities (object), include statements for which any of the context

activities match the specified object.

actor Actor Object

(JSON)

 Filter, only return statements about the specified agent. Note: at minimum agent

objects where every property is identical are considered identical. Additionaly, if the

LRS can determine that two actor objects refer to the same agent, they should be

treated as identical for filtering purposes. See agent object definition for details.

since Timestamp only statements stored since the specified timestamp (exclusive) are returned

until Timestamp only statements stored at or before the specified timestamp are returned

limit Nonnegative

Integer

0 Maximum number of statements to return. 0 indicates return the maximum the

server will allow.

authoritative Boolean True Only include statements that are asserted by actors authorized to make this

assertion (according to the LRS), and are not superseded by later statements.

sparse Boolean True If true, only include minimum information necessary in actor and activity objects to

identify them, If false, return populated activity and actor objects.

Activity objects contain Language Map objects for name and description. Only one

language should be returned in each of these maps.

In order to provide these strings in the most relevant language, the LRS will apply

the Accept-Language header as described in RFC 2616 (HTTP 1.1), except that

this logic will be applied to each language map individually to select which language

entry to include, rather than to the resource (list of statements) as a whole.

instructor Actor Object

(JSON)

True Same behavior as “actor” filter, except match against “context:instructor”.

ascending Boolean False If true, return results in ascending order of stored time

Note: Due to query string limits, this method may be called using POST and form fields if necessary. The LRS will

differentiate a POST to add a statement or to list statements based on the parameters passed.

7.3 State API:

Generally, this is a scratch area for activity providers that do not have their own internal storage, or need to persist stat e

across devices. When using the state API, be aware of how the stateId parameter affects the semantics of the call. If it is

included, the GET and DELETE methods will act upon a single defined state document identified by "stateId". Otherwise,

GET will return the available IDs, and DELETE will delete all state in the context given through the other parameters.

PUT | GET | DELETE http://example.com/XAPI/activities/state

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://example.com/TCAPI/activities/state

 Experience API Version 0.95

33

Stores, fetches, or deletes the document specified by the given stateId that exists in the context of the specified activity,

agent, and registration (if specified).

Returns: (PUT | DELETE) 204 No Content, (GET) 200 OK - State Content

Parameter Type Required Description

activityId String yes The activity ID associated with this state

agent (JSON/XML) yes The agent associated with this state

registration UUID no The registration ID associated with this state

stateId String yes The id for this state, within the given context

GET http://example.com/XAPI/activities/state

Fetches IDs of all state data for this context (activity + agent [+ registration if specified]). If “since” parameter is specified,

this is limited to entries that have been stored or updated since the specified timestamp (exclusive).

Returns: 200 OK, Array of IDs

Parameter Type Required Description

activityId String yes The activity ID associated with these states

agent (JSON/XML) yes The actor associated with these states

registration UUID no The registration ID associated with these states

since Timestamp no Only IDs of states stored since the specified timestamp (exclusive) are returned

DELETE http://example.com/XAPI/activities/state

Deletes all state data for this context (activity + agent [+ registration if specified]).

Returns: 204 No Content

Parameter Type Required Description

activityId String yes The activity ID associated with this state

http://example.com/TCAPI/activities/state
http://example.com/TCAPI/activities/state

 Experience API Version 0.95

34

agent (JSON/XML) yes The actor associated with this state

registration UUID no The registration ID associated with this state

7.4 Activity Profile API:

The Activity Profile API is much like the State API, allowing for arbitrary key / document pairs to be saved which are related

to an Activity. When using the profile API for manipulating documents, be aware of how the profileId parameter affects the

semantics of the call. If it is included, the GET and DELETE methods will act upon a single defined document identified by

"profileId". Otherwise, GET will return the available IDs, and DELETE will delete all state in the context given through the

other parameters.

The Activity Profile API also includes a method to retrieve a full description of an activity from the LRS.

GET http://example.com/XAPI/activities

Loads the complete activity object specified.

Returns: 200 OK - Content

Parameter Type Required Description

activityId String yes The ID associated with the activities to load

PUT | GET | DELETE http://example.com/XAPI/activities/profile

Saves/retrieves/deletes the specified profile document in the context of the specified activity

Returns: (PUT | DELETE) 204 No Content, (GET) 200 OK - Profile Content

Parameter Type Required Description

activityId String yes The activity ID associated with this profile

profileId String yes The profile ID associated with this profile

GET http://example.com/XAPI/activities/profile

Loads IDs of all profile entries for an activity. If “since” parameter is specified, this is limited to entries that have been stored

or updated since the specified timestamp (exclusive).

Returns: 200 OK - List of IDs

http://example.com/TCAPI/activities
http://example.com/TCAPI/activities/profile
http://example.com/TCAPI/activities/profile

 Experience API Version 0.95

35

Parameter Type Required Description

activityId String yes The activity ID associated with these profiles

since Timestamp no Only IDs of profiles stored since the specified timestamp (exclusive) are returned

7.5 Agent Profile API:

The Agent Profile API is much like the State API, allowing for arbitrary key / document pairs to be saved which are related t o

an Agent. When using the profile API for manipulating documents, be aware of how the profileId parameter affects the

semantics of the call. If it is included, the GET and DELETE methods will act upon a single defined document identified by

"profileId". Otherwise, GET will return the available IDs, and DELETE will delete all state in the context given through the

other parameters.

The Agent Profile API also includes a method to retrieve a special object with combined information about an Agent derived

from an outside service, such as a directory service.

GET http://example.com/XAPI/agents

Return a special, Person object for a specified agent. The Person object is very similar to an Agent object, but instead of

each attribute having a single value, each attribute has an array value, and it is legal to include multiple identifying

properties. Note that the argument is still a normal Agent object with a single identifier and no arrays. Note that this is

different from the FOAF concept of person, person is being used here to indicate a person-centric view of the LRS agent

data, but agents just refer to one persona (a person in one context).

An LRS capable of returning multiple identifying properties for an Person SHOULD require the connecting credentials have

increased, explicitly given permissions. An LRS SHOULD reject insufficiently privileged requests with 403 "Forbidden". If an

LRS does not have any additional information about an Agent to return, the LRS MUST still return an Person when queried,

but that Person object will only include the information associated with the requested Agent.

Person properties. All array properties must be populated with members with the same definition as the similarly named

property from Agent objects.

Property Description

objectType “Person”. Required.

name Array of strings. Optional.

mbox* Array of strings.

mbox_sha1sum* Array of strings.

openid* Array of strings.

account* Array of account objects.

http://example.com/TCAPI/actors
http://xmlns.com/foaf/spec/#term_mbox
http://xmlns.com/foaf/spec/#term_mbox
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://xmlns.com/foaf/spec/#term_mbox_sha1sum

 Experience API Version 0.95

36

Returns: 200 OK - Expanded Agent Object

Parameter Type Required Description

agent Object (JSON) yes The agent representation to use in fetching expanded agent information

PUT | GET | DELETE http://example.com/XAPI/agents/profile

Saves/retrieves/deletes the specified profile document in the context of the specified agent.

Returns: (PUT | DELETE) 204 No Content, (GET) 200 OK - Profile Content

Parameter Type Required Description

agent Object (JSON) yes The agent associated with this profile

profileId String yes The profile ID associated with this profile

GET http://example.com/XAPI/agents/profile

Loads IDs of all profile entries for an agent. If “since” parameter is specified, this is limited to entries that have been s tored or

updated since the specified timestamp (exclusive).

Returns: 200 OK - List of IDs

Parameter Type Required Description

agent Object (JSON) yes The agent associated with this profile

since Timestamp no Only IDs of profiles stored since the specified timestamp (exclusive) are returned

7.6 Cross Origin Requests:

One of the goals of the XAPI is to allow cross-domain tracking, and even though XAPI seeks to enable tracking from

applications other than browsers, browsers still need to be supported. Internet Explorer 8 and 9 do not implement Cross

Origin Resource Sharing, but rather use their own Cross Domain Request API, which can not use all of the XAPI as

describe above due to only supporting “GET” and “POST”, and not allowing HTTP headers to be set.

The following describes alternate syntax for consumers to use only when unable to use the usual syntax for specific calls

due to the restrictions mentioned above. All LRSs must support this syntax.

Method: All XAPI requests issued must be POST. The intended XAPI method must be included as the only query string

parameter on the request. (ex: /XAPI/statements?method=PUT)

http://example.com/TCAPI/actors/profile
http://example.com/TCAPI/actors/profile

 Experience API Version 0.95

37

Headers: Any required parameters which are expected to appear in the HTTP header must instead be included as a form

parameter with the same name

Content: If the XAPI call involved sending content, that content must now be encoded and included as a form parameter

called “content”. The LRS will interpret this content as a UTF-8 string, storing binary data is not supported with this syntax.

See Appendix B for an example function written in Javascript which transforms a normal request into one using this alternate

syntax.

7.7 Validation:

The function of the LRS within the XAPI is to store and retrieve statements. As long as it has sufficient information to

perform these tasks, it is expected that it does them. Validation of statements in the Experience API is focused solely on

syntax, not semantics. It is required to enforce rules regarding structure, but not rules regarding meaning. Enforcing the

rules that ensure valid meaning among verb definitions, activity types, and extensions is a responsibility carried out by

community of practice, in any way they see fit.

 Experience API Version 0.95

38

Appendix A: Bookmarklet

XAPI enables using an “I learned this” bookmarklet to self-report learning. The following is an example of such a

bookmarklet, and the statement that this bookmarklet would send if used on the page: http://scorm.com/xapi.

The bookmarklet would be provided by the LRS to track to, for a specific user. Therefore the LRS URL, authentication, and

actor information is hard coded in the bookmarklet. Note that since the authorization token must be included in the

bookmarklet, the LRS should provide a token with limited privileges, ideally only enabling the storage of self-reported

learning statements.

The UUID generation is only necessary since the PUT method is being used, if a statement is POSTED without an ID the

LRS will generate it.

In order to allow cross-domain reporting of statements, a browser that supports the “Access-Control-Allow-Origin” and

“Access-Control-Allow-Methods” headers must be used, such as IE 8+, FF 3.5+, Safari 4+, Safari iOS Chrome, or Android

browser. Additionally the server must set the required headers.

var url = "http://localhost:8080/XAPI/Statements/?statementId="+_ruuid();

var auth = "Basic dGVzdDpwYXNzd29yZA==";

var statement =

{actor:{"mbox" : "mailto:learner@example.adlnet.gov"},verb:"",object:{id:"" }};

var definition = statement.object.definition;

statement.verb='http://adlnet.gov/expapi/verbs/experienced';

statement.object.id = window.location.toString();

definition.type="http://adlnet.gov/expapi/activities/link";

var xhr = new XMLHttpRequest();

xhr.open("PUT", url, true);

xhr.setRequestHeader("Content-Type", "application/json");

xhr.setRequestHeader("Authorization", auth);

xhr.onreadystatechange = function() {

if(xhr.readyState == 4) {

alert(xhr.status + " : " + xhr.responseText);

}

};

xhr.send(JSON.stringify(statement));

/*!

Modified from: Math.uuid.js (v1.4)

http://www.broofa.com

mailto:robert@broofa.com

Copyright (c) 2010 Robert Kieffer

Dual licensed under the MIT and GPL licenses.

*/

function _ruuid() {

return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {

var r = Math.random()*16|0, v = c == 'x' ? r : (r&0x3|0x8);

return v.toString(16);

});

}

Example Statement Using Bookmarklet

http://scorm.com/tincan
http://scorm.com/tincan
http://scorm.com/tincan
http://scorm.com/tincan
http://scorm.com/tincan
http://scorm.com/tincan
http://scorm.com/tincan
http://localhost:8080/TCAPI/Statements/?statementId=
mailto:learner@example.scorm.com
http://adlnet.gov/expapi/verbs/experienced
http://adlnet.gov/expapi/activities/link
http://www.broofa.com/
mailto:robert@broofa.com

 Experience API Version 0.95

39

Headers:

{ 'content-type': 'application/json; charset=UTF-8',

authorization: 'd515309a-044d-4af3-9559-c041e78eb446',

referer: 'http://adlnet.gov/xapi/',

'content-length': '###',

origin: 'http://adlnet.gov' }

Method/Path:

PUT : /XAPI/Statements/?statementId=ed1d064a-eba6-45ea-a3f6-34cdf6e1dfd9

Body:

{

 "actor": {

 "objectType": "Agent",

 "mbox": "mailto:learner@example.adlnet.gov"

 },

 "verb": "http://adlnet.gov/expapi/verbs/experienced",

 "object": {

 "id": "http://adlnet.gov/xapi/ ",

 "definition": {

 "type": "http://adlnet.gov/expapi/activities/link"

 }

 }

}

http://scorm.com/tincan/
http://scorm.com/

 Experience API Version 0.95

40

Appendix B: Creating an “IE Mode” Request

function getIEModeRequest(method, url, headers, data){

var newUrl = url;

Everything that was on query string goes into form vars

var formData = new Array();

var qsIndex = newUrl.indexOf('?');

if(qsIndex > 0){

formData.push(newUrl.substr(qsIndex+1));

newUrl = newUrl.substr(0, qsIndex);

}

Method has to go on querystring, and nothing else

newUrl = newUrl + '?method=' + method;

Headers

if(headers !== null){

for(var headerName in headers){

formData.push(

headerName + "=" +

encodeURIComponent(

headers[headerName]));

}

}

The original data is repackaged as "content" form var

if(data !== null){

formData.push('content=' + encodeURIComponent(data));

}

return {

"method":"POST",

"url":newUrl,

"headers":{},

"data":formData.join("&")

};

}

 Experience API Version 0.95

41

Appendix C: Example definitions for activities of type

“cmi.interaction”

true-false

"definition": {

"description": {"en-US": "Does the XAPI include the concept of statements?"},

"type": "http://adlnet.gov/expapi/activities/cmi.interaction",

"interactionType": "true-false",

"correctResponsesPattern": ["true"]

}

choice

"definition": {

"description": {"en-US": "Which of these prototypes are available at the beta site?"},

"type": "http://adlnet.gov/expapi/activities/cmi.interaction",

"interactionType": "multiple-choice",

"correctResponsesPattern": ["golf[,]tetris"],

"choices": [

{"id": "golf", "description": {"en-US": "Golf Example"}},

{"id": "facebook", "description": {"en-US": "Facebook App"}},

{"id": "tetris", "description": {"en-US": "Tetris Example"}},

{"id": "scrabble", "description": {"en-US": "Scrabble Example"}}

]

}

fill-in

"definition": {

"description": {"en-US": "Ben is often heard saying: "},

http://adlnet.gov/expapi/activities/cmi.interaction
http://adlnet.gov/expapi/activities/cmi.interaction

 Experience API Version 0.95

42

"type": "http://adlnet.gov/expapi/activities/cmi.interaction",

"interactionType": "fill-in",

"correctResponsesPattern": ["Bob’s your uncle"]

}

likert

"definition": {

"description": {"en-US": "How awesome is Experience API?"},

"type": "http://adlnet.gov/expapi/activities/cmi.interaction",

"interactionType": "likert",

"correctResponsesPattern": ["likert_3"],

"scale": [

{"id": "likert_0", "description": {"en-US": "It’s OK"}},

{"id": "likert_1", "description": {"en-US": "It’s Pretty Cool"}},

{"id": "likert_2", "description": {"en-US": "It’s Damn Cool"}},

{"id": "likert_3", "description": {"en-US": "It’s Gonna Change the World"}}

]

}

matching

{

"definition":{

"description":{

"en-US":"Match these people to their kickball team:"

},

"type":"http://adlnet.gov/expapi/activities/cmi.interaction",

"interactionType":"matching",

"correctResponsesPattern":[

"ben[.]3[,]chris[.]2[,]troy[.]4[,]freddie[.]1"

],

"source":[

{

"id":"ben",

"description":{

"en-US":"Ben"

http://adlnet.gov/expapi/activities/cmi.interaction
http://adlnet.gov/expapi/activities/cmi.interaction
http://adlnet.gov/expapi/activities/cmi.interaction

 Experience API Version 0.95

43

}

},

{

"id":"chris",

"description":{

"en-US":"Chris"

}

},

{

"id":"troy",

"description":{

"en-US":"Troy"

}

},

{

"id":"freddie",

"description":{

"en-US":"Freddie"

}

}

],

"target":[

{

"id":"1",

"description":{

"en-US":"SCORM Engine"

}

},

{

"id":"2",

"description":{

"en-US":"Pure-sewage"

}

},

{

"id":"3",

"description":{

"en-US":"Project Tin Can API"

}

},

{

"id":"4",

"description":{

"en-US":"SCORM Cloud"

}

}

]

}

}

performance

"definition": {

"description": {"en-US": "This interaction measures performance over a day of RS sports:"},

 Experience API Version 0.95

44

"type": "http://adlnet.gov/expapi/activities/cmi.interaction",

"interactionType": "performance",

"correctResponsesPattern": ["pong[.]1:[,]dg[.]:10[,]lunch[.]"],

"steps": [

{"id": "pong", "description": {"en-US": "Net pong matches won"}},

{"id": "dg", "description": {"en-US": "Strokes over par in disc golf at Liberty"}},

{"id": "lunch", "description": {"en-US": "Lunch having been eaten"}}

]

}

sequencing

"definition": {

"description": {"en-US": "Order players by their pong ladder position:"},

"type": "http://adlnet.gov/expapi/activities/cmi.interaction",

"interactionType": "sequencing",

"correctResponsesPattern": ["tim[,]mike[,]ells[,]ben"],

"choices": [

{"id": "tim", "description": {"en-US": "Tim"}},

{"id": "ben", "description": {"en-US": "Ben"}},

{"id": "ells", "description": {"en-US": "Ells"}},

{"id": "mike", "description": {"en-US": "Mike"}}

]

}

numeric

"definition": {

"description": {"en-US": "How many jokes is Chris the butt of each day?"},

http://adlnet.gov/expapi/activities/cmi.interaction
http://adlnet.gov/expapi/activities/cmi.interaction

 Experience API Version 0.95

45

"type": "http://adlnet.gov/expapi/activities/cmi.interaction",

"interactionType": "numeric",

"correctResponsesPattern": ["4:"]

}

other

"definition": {

"description": {"en-US": "On this map, please mark Franklin, TN"},

"type": "http://adlnet.gov/expapi/activities/cmi.interaction",

"interactionType": "other",

"correctResponsesPattern": ["(35.937432,-86.868896)"]

}

http://adlnet.gov/expapi/activities/cmi.interaction
http://adlnet.gov/expapi/activities/cmi.interaction

